Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 18

Question Number 184920    Answers: 1   Comments: 0

Investigate the series (1/(1×2))+(1/(2×3))+(1/(3×4))+(1/(4×5))+... Does it Converges or Diverges?

$$\mathrm{Investigate}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}×\mathrm{5}}+... \\ $$$$\mathrm{Does}\:\mathrm{it}\:\mathrm{Converges}\:\mathrm{or}\:\mathrm{Diverges}? \\ $$

Question Number 184918    Answers: 2   Comments: 2

Show that 1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+... is not convergent Hi

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+...\:\mathrm{is}\: \\ $$$$\mathrm{not}\:\mathrm{convergent} \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184915    Answers: 0   Comments: 2

Consider the series below 1+5+25+125+... Investigate whether it is convergent or divergent. Thanks

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{below} \\ $$$$\mathrm{1}+\mathrm{5}+\mathrm{25}+\mathrm{125}+...\:\mathrm{Investigate} \\ $$$$\mathrm{whether}\:\mathrm{it}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\: \\ $$$$\mathrm{divergent}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$

Question Number 184873    Answers: 1   Comments: 0

Find the real number satisfying x=(√(1+(√(1+(√(1+x))))))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{satisfying} \\ $$$$\:\mathrm{x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}}}} \\ $$

Question Number 184832    Answers: 4   Comments: 1

Given the acceleration a=−4sin2t, initial velocity v(0)=2, and the initial position of the body as s(0)=−3, find the body′s position at time t. Hi

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{acceleration}\: \\ $$$$\mathrm{a}=−\mathrm{4sin2t},\:\mathrm{initial}\:\mathrm{velocity}\: \\ $$$$\mathrm{v}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{and}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{position}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{as}\:\mathrm{s}\left(\mathrm{0}\right)=−\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{body}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t}. \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184787    Answers: 0   Comments: 2

x^4 +16x^3 +9x^2 +256x+256=0 Find the values of x?

$$\mathrm{x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{256x}+\mathrm{256}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}? \\ $$

Question Number 184744    Answers: 1   Comments: 1

given that the 5th term of an AP is more than its firs term by 12. and the 6th term is more than the first term by 10. find the fist term? common difference and 100th term

$${given}\:{that}\:{the}\:\mathrm{5}{th}\:{term}\:{of}\:{an}\:{AP}\:{is}\:{more}\:{than}\:{its}\:{firs}\:{term}\:{by}\:\mathrm{12}.\:{and}\:{the}\:\mathrm{6}{th}\:{term}\:{is}\:{more}\:{than}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}.\:{find}\:{the}\:{fist}\:{term}?\:{common}\:{difference}\:{and}\:\mathrm{100}{th}\:{term} \\ $$$$ \\ $$

Question Number 184731    Answers: 1   Comments: 0

Express this function in both its Cartesian and polar form f(z) = ze^(iz) . Help!

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{function}\:\mathrm{in}\:\mathrm{both}\:\mathrm{its} \\ $$$$\mathrm{Cartesian}\:\mathrm{and}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{ze}^{\mathrm{iz}} . \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184656    Answers: 1   Comments: 0

prove that the area of a triangle whose two sides are A^− and B^− is given by (1/2)∣A×B∣. Also find the direction−cosine of normal to this area. Help!

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{whose}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{are}\:\overset{−} {\mathrm{A}}\:\mathrm{and}\:\overset{−} {\mathrm{B}}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{A}×\mathrm{B}\mid. \\ $$$$\mathrm{Also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{direction}−\mathrm{cosine} \\ $$$$\mathrm{of}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{this}\:\mathrm{area}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184655    Answers: 1   Comments: 0

prove that an angle inscribe in a semi−circle is a right angle. Help!

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{inscribe}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{semi}−\mathrm{circle}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184574    Answers: 0   Comments: 5

Test whether this is Convergent or Divergent Σ_(n=0) ^∞ (−1)^n ((n!x^n )/(5n)) Help!

$$\mathrm{Test}\:\mathrm{whether}\:\mathrm{this}\:\mathrm{is}\:\mathrm{Convergent}\:\mathrm{or} \\ $$$$\mathrm{Divergent} \\ $$$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{n}!\mathrm{x}^{\mathrm{n}} }{\mathrm{5n}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184497    Answers: 1   Comments: 0

Question Number 184487    Answers: 0   Comments: 1

Question Number 184454    Answers: 0   Comments: 1

Question Number 184320    Answers: 0   Comments: 4

All-time Universal Formula determinant (((OLD+1=NEW))) Year:-The above formula applies every year. Month:-It also applies every month. Day:-It also applies every day. .... Second:-It also applies every second. ... SO, along with Happy New Year! also: Happy New Month! Happy New Day! .... Happy New Second! ...

$$\boldsymbol{\mathrm{All}}-\boldsymbol{\mathrm{time}}\:\boldsymbol{\mathrm{Universal}}\:\boldsymbol{\mathrm{Formula}} \\ $$$$\:\begin{array}{|c|}{\boldsymbol{\mathrm{OLD}}+\mathrm{1}=\boldsymbol{\mathrm{NEW}}}\\\hline\end{array}\: \\ $$$$\boldsymbol{{Year}}:-\boldsymbol{\mathcal{T}{he}}\:\boldsymbol{{above}}\:\boldsymbol{{formula}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\:\boldsymbol{{year}}. \\ $$$$\boldsymbol{{Month}}:-\boldsymbol{{It}}\:\boldsymbol{{also}}\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{month}}. \\ $$$$\boldsymbol{{Day}}:-\boldsymbol{{It}}\:\boldsymbol{{also}}\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\:\boldsymbol{{day}}. \\ $$$$.... \\ $$$$\boldsymbol{{Second}}:-\boldsymbol{{It}}\:\boldsymbol{{also}}\:\boldsymbol{{applies}}\:\boldsymbol{{every}}\:\:\boldsymbol{{second}}. \\ $$$$... \\ $$$$\boldsymbol{\mathrm{SO}}, \\ $$$$\boldsymbol{\mathrm{along}}\:\boldsymbol{\mathrm{with}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Year}}! \\ $$$$\boldsymbol{\mathrm{also}}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Month}}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Day}}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:.... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Happy}}\:\boldsymbol{\mathrm{New}}\:\boldsymbol{\mathrm{Second}}! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:... \\ $$$$ \\ $$

Question Number 184311    Answers: 1   Comments: 0

Question Number 184307    Answers: 1   Comments: 0

Show that the boundary−value problem y′′+λy=0 y(0)=0, y(L)=0 has only the trival solution y=0 for the cases λ=0 and λ<0. let L be a non−zero real number. ?

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{boundary}−\mathrm{value} \\ $$$$\mathrm{problem}\:\mathrm{y}''+\lambda\mathrm{y}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}, \\ $$$$\mathrm{y}\left(\mathrm{L}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{only}\:\mathrm{the}\:\mathrm{trival}\:\mathrm{solution} \\ $$$$\mathrm{y}=\mathrm{0}\:\mathrm{for}\:\mathrm{the}\:\mathrm{cases}\:\lambda=\mathrm{0}\:\mathrm{and}\:\lambda<\mathrm{0}. \\ $$$$\mathrm{let}\:\mathrm{L}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}−\mathrm{zero}\:\mathrm{real}\:\mathrm{number}. \\ $$$$ \\ $$$$ \\ $$$$? \\ $$

Question Number 184306    Answers: 1   Comments: 0

Consider the boundary value problem y^(′′) −2y′+2y=0, y(a)=c ,y(b)=d. 1) If this problem has a unique solution, how are a and b related? 2) If this problem has no solution, how are a,b,c and d related? Help!

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{boundary}\:\mathrm{value}\: \\ $$$$\mathrm{problem}\:\mathrm{y}^{''} −\mathrm{2y}'+\mathrm{2y}=\mathrm{0},\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{a}\right)=\mathrm{c} \\ $$$$,\mathrm{y}\left(\mathrm{b}\right)=\mathrm{d}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{If}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{has}\:\mathrm{a}\:\mathrm{unique} \\ $$$$\mathrm{solution},\:\mathrm{how}\:\mathrm{are}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{related}? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{If}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{has}\:\mathrm{no}\:\mathrm{solution}, \\ $$$$\mathrm{how}\:\mathrm{are}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{and}\:\mathrm{d}\:\mathrm{related}? \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 184264    Answers: 1   Comments: 0

Question Number 184218    Answers: 1   Comments: 0

Question Number 184188    Answers: 1   Comments: 0

Differentiate, y = x^(x−1) hi

$$\mathrm{Differentiate},\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{x}−\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{hi} \\ $$

Question Number 184187    Answers: 1   Comments: 0

Differentiate, y=e^x + x^x M.m

$$\mathrm{Differentiate},\:\mathrm{y}=\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{x}^{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 184185    Answers: 1   Comments: 0

Differentiate, y=(log_e x)^x M.m

$$\mathrm{Differentiate},\:\mathrm{y}=\left(\mathrm{log}_{\mathrm{e}} \mathrm{x}\right)^{\mathrm{x}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Question Number 184184    Answers: 1   Comments: 0

y=(sinx)^x Differentiate

$$\mathrm{y}=\left(\mathrm{sinx}\right)^{\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{Differentiate} \\ $$

Question Number 184126    Answers: 1   Comments: 0

Question Number 184125    Answers: 0   Comments: 0

  Pg 13      Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com