Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 18
Question Number 185847 Answers: 0 Comments: 0
Question Number 185786 Answers: 0 Comments: 0
Question Number 185781 Answers: 1 Comments: 0
Question Number 185553 Answers: 1 Comments: 0
Question Number 185518 Answers: 0 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence}\:\mathrm{of} \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{ne}^{−\mathrm{n}^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 185517 Answers: 1 Comments: 0
Question Number 185470 Answers: 0 Comments: 3
$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{the}\:\mathrm{series} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}+\mathrm{2n}^{\mathrm{2}} }{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{not} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 185450 Answers: 0 Comments: 1
$$\mathrm{Write}\:\mathrm{down}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{cosx}\:\left(\mathrm{b}\right)\:\frac{\mathrm{1}}{\mathrm{l}+\mathrm{x}},\:\mathrm{and}\:\mathrm{hence}\:\mathrm{show} \\ $$$$\mathrm{that}\:\frac{\mathrm{cosx}}{\mathrm{1}+\mathrm{x}}\:=\:\mathrm{1}−\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{\mathrm{13x}^{\mathrm{4}} }{\mathrm{24}}+... \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 185449 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\frac{\mathrm{x}−\mathrm{3}}{\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{in} \\ $$$$\mathrm{ascending}\:\mathrm{power}\:\mathrm{of}\:\mathrm{x}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 185401 Answers: 0 Comments: 1
$$\mathrm{Show}\:\mathrm{that}\:\frac{\mathrm{1}+\mathrm{z}}{\mathrm{1}−\mathrm{z}}\:+\:\frac{\mathrm{1}+\bar {\mathrm{z}}}{\mathrm{1}−\bar {\mathrm{z}}}\:=\:\frac{\mathrm{2}\left(\mathrm{1}−\mid\mathrm{z}\mid^{\mathrm{2}} \right)}{\mid\mathrm{1}−\mathrm{z}\mid^{\mathrm{2}} } \\ $$$$\mathrm{Where}\:\mathrm{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 185374 Answers: 1 Comments: 0
$$\mathrm{li}\underset{\mathrm{z}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{iz}^{\mathrm{3}} +\mathrm{iz}−\mathrm{1}}{\left(\mathrm{2z}+\mathrm{3i}\right)\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 185371 Answers: 1 Comments: 0
$$\left(\mathrm{1}−\mathrm{z}\right)\left(\mathrm{1}−\overset{−} {\mathrm{z}}\right)\:=\:? \\ $$$$\mathrm{Where}\:\mathrm{z}\:\mathrm{is}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{number} \\ $$$$ \\ $$$$. \\ $$
Question Number 185278 Answers: 1 Comments: 3
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{harmonic}\:\mathrm{in} \\ $$$$\mathrm{polar}\:\mathrm{form} \\ $$
Question Number 185245 Answers: 1 Comments: 1
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{uniformly} \\ $$$$\mathrm{continous}\:\mathrm{in}\:\mathrm{the}\:\mathrm{region}\:\mid\mathrm{z}\mid<\mathrm{R} \\ $$$$\mathrm{where}\:\mathrm{0}<\mathrm{R}<\infty. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 185243 Answers: 1 Comments: 3
$$\mathrm{Using}\:\varepsilon−\delta\:\mathrm{approach}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{li}\underset{\mathrm{z}\rightarrow\mathrm{i}} {\mathrm{m}}\frac{\mathrm{3z}^{\mathrm{4}} −\mathrm{2z}^{\mathrm{3}} +\mathrm{8z}^{\mathrm{2}} −\mathrm{2z}+\mathrm{5}}{\mathrm{z}−\mathrm{i}}=\mathrm{4}+\mathrm{4i} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 185181 Answers: 2 Comments: 3
Question Number 185038 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{the}\:\mathrm{series}\:\frac{\mathrm{x}}{\mathrm{27}}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{125}}+...+\frac{\mathrm{x}^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }+... \\ $$$$\mathrm{is}\:\mathrm{absolutely}\:\mathrm{convergent}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 185036 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{series}\:\mathrm{for}\:\mathrm{cosx}.\:\mathrm{Hence},\: \\ $$$$\mathrm{deduce}\:\mathrm{series}\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{and}\:\mathrm{show}\:\mathrm{that}, \\ $$$$\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{small},\:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}−\mathrm{x}^{\mathrm{2}} \mathrm{cosx}}{\mathrm{x}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{360}} \\ $$$$\mathrm{approximately}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 185014 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{relation}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} +\mathrm{kx}+\mathrm{c},\:\mathrm{where}\:\mathrm{K} \\ $$$$\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{constant}\:\mathrm{passes}\:\mathrm{through} \\ $$$$\mathrm{the}\:\mathrm{points}\:\left(−\mathrm{1},\:−\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{1},\:\mathrm{8}\right)\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{coordinate}\:\mathrm{axes}.\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{K}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Question Number 185116 Answers: 1 Comments: 0
Question Number 184959 Answers: 2 Comments: 0
Question Number 184939 Answers: 1 Comments: 0
$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{convergent}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{series}? \\ $$$$\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} +...+\mathrm{x}_{\mathrm{n}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 184920 Answers: 1 Comments: 0
$$\mathrm{Investigate}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}×\mathrm{5}}+... \\ $$$$\mathrm{Does}\:\mathrm{it}\:\mathrm{Converges}\:\mathrm{or}\:\mathrm{Diverges}? \\ $$
Question Number 184918 Answers: 2 Comments: 2
$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+...\:\mathrm{is}\: \\ $$$$\mathrm{not}\:\mathrm{convergent} \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$
Question Number 184915 Answers: 0 Comments: 2
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{below} \\ $$$$\mathrm{1}+\mathrm{5}+\mathrm{25}+\mathrm{125}+...\:\mathrm{Investigate} \\ $$$$\mathrm{whether}\:\mathrm{it}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\: \\ $$$$\mathrm{divergent}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$
Question Number 184873 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{satisfying} \\ $$$$\:\mathrm{x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}}}} \\ $$
Pg 13 Pg 14 Pg 15 Pg 16 Pg 17 Pg 18 Pg 19 Pg 20 Pg 21 Pg 22
Terms of Service
Privacy Policy
Contact: info@tinkutara.com