Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 150

Question Number 11536    Answers: 2   Comments: 0

Question Number 11433    Answers: 1   Comments: 5

for r=(1/θ), show that the arc length between θ=3π^(−1) and θ=nπ^(−1) (where n>3) is aproxiately equal to the length of the line y=3π^(−1) between the same bounds. Or show otherwise.

$$\mathrm{for}\:{r}=\frac{\mathrm{1}}{\theta},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{length}\:\mathrm{between} \\ $$$$\theta=\mathrm{3}\pi^{−\mathrm{1}} \:\:\mathrm{and}\:\theta={n}\pi^{−\mathrm{1}} \:\:\:\left(\mathrm{where}\:\:{n}>\mathrm{3}\right)\:\:\mathrm{is}\:\mathrm{aproxiately} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:{y}=\mathrm{3}\pi^{−\mathrm{1}} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{same}\:\mathrm{bounds}.\:\mathrm{Or}\:\mathrm{show}\:\mathrm{otherwise}. \\ $$$$ \\ $$

Question Number 11413    Answers: 1   Comments: 0

Find the length of the arc of the hyperbolic spiral rθ=a lying between r=a and r=2a.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbolic} \\ $$$$\mathrm{spiral}\:\:\mathrm{r}\theta=\mathrm{a}\:\:\mathrm{lying}\:\mathrm{between}\:\:\mathrm{r}=\mathrm{a}\:\:\mathrm{and}\: \\ $$$$\mathrm{r}=\mathrm{2a}. \\ $$

Question Number 11393    Answers: 0   Comments: 0

Question Number 11389    Answers: 1   Comments: 0

Given that the mean relative atomic mass of chlorine contain two isotopes of mass numbe 35 and 37. What is the percentage of composition of the isotope of mass number 37

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{relative}\:\mathrm{atomic}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{chlorine}\:\mathrm{contain}\:\mathrm{two}\:\mathrm{isotopes} \\ $$$$\mathrm{of}\:\mathrm{mass}\:\mathrm{numbe}\:\mathrm{35}\:\mathrm{and}\:\mathrm{37}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{composition}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{isotope}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{number}\:\mathrm{37}\: \\ $$

Question Number 11373    Answers: 1   Comments: 0

Question Number 11372    Answers: 0   Comments: 0

If G_1 and G_2 are groups , and f : G_1 →G_2 is a group homomorphism , then prove that o(G_1 ) = o(G_2 ) .

$$\mathrm{If}\:\mathrm{G}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{G}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{groups}\:,\:\mathrm{and}\:\mathrm{f}\::\:\mathrm{G}_{\mathrm{1}} \:\rightarrow\mathrm{G}_{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{homomorphism}\:,\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{o}\left(\mathrm{G}_{\mathrm{1}} \right)\:=\:\mathrm{o}\left(\mathrm{G}_{\mathrm{2}} \right)\:. \\ $$

Question Number 11388    Answers: 0   Comments: 0

A cell supplies a current of 6 ameter through a 2 coil and a current of 0.2 ameter through 7 coil. Calculate the limits and the internal resistance of the cell

$$\mathrm{A}\:\mathrm{cell}\:\mathrm{supplies}\:\mathrm{a}\:\mathrm{current}\:\mathrm{of}\:\mathrm{6}\:\mathrm{ameter}\:\mathrm{through}\:\mathrm{a}\:\mathrm{2}\:\mathrm{coil}\:\mathrm{and}\:\mathrm{a}\:\mathrm{current}\:\mathrm{of}\:\mathrm{0}.\mathrm{2}\: \\ $$$$\mathrm{ameter}\:\mathrm{through}\:\mathrm{7}\:\mathrm{coil}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{and}\:\mathrm{the}\:\mathrm{internal}\:\mathrm{resistance} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{cell} \\ $$

Question Number 11332    Answers: 0   Comments: 0

Question Number 11327    Answers: 0   Comments: 0

pl show me typing and shape drawing app for mobile.

$$\mathrm{pl}\:\mathrm{show}\:\mathrm{me}\:\mathrm{typing}\:\mathrm{and}\:\mathrm{shape}\:\mathrm{drawing}\:\mathrm{app}\:\mathrm{for}\:\mathrm{mobile}. \\ $$

Question Number 11284    Answers: 0   Comments: 0

a+2b+3c....(1) −3a−4b+2c....(2) 2a−b−c....(3) a=...?? b=...?? c=...??

$${a}+\mathrm{2}{b}+\mathrm{3}{c}....\left(\mathrm{1}\right) \\ $$$$−\mathrm{3}{a}−\mathrm{4}{b}+\mathrm{2}{c}....\left(\mathrm{2}\right) \\ $$$$\mathrm{2}{a}−{b}−{c}....\left(\mathrm{3}\right) \\ $$$${a}=...?? \\ $$$${b}=...?? \\ $$$${c}=...?? \\ $$

Question Number 11283    Answers: 0   Comments: 0

2a+b+4c....(1) a+3c....(2) −3a−4b−c....(4) a=..?? b=..?? c=..??

$$\mathrm{2}{a}+{b}+\mathrm{4}{c}....\left(\mathrm{1}\right) \\ $$$${a}+\mathrm{3}{c}....\left(\mathrm{2}\right) \\ $$$$−\mathrm{3}{a}−\mathrm{4}{b}−{c}....\left(\mathrm{4}\right) \\ $$$${a}=..?? \\ $$$${b}=..?? \\ $$$${c}=..?? \\ $$

Question Number 11272    Answers: 1   Comments: 0

Question Number 11266    Answers: 0   Comments: 1

Question Number 11262    Answers: 1   Comments: 0

The k^(th) term of a sequence is K, the m^(th) term of M and n^(th) term is N. Show that if it is a geometic, (m−n) log K + (n−k) log M + (k−m) log N = 0.

$$\mathrm{The}\:\mathrm{k}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{K},\:\mathrm{the}\:\mathrm{m}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\:\mathrm{M}\:\mathrm{and}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:\mathrm{N}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometic}, \\ $$$$\left(\mathrm{m}−\mathrm{n}\right)\:\mathrm{log}\:\mathrm{K}\:+\:\left(\mathrm{n}−\mathrm{k}\right)\:\mathrm{log}\:\mathrm{M}\:+\:\left(\mathrm{k}−\mathrm{m}\right)\:\mathrm{log}\:\mathrm{N}\:=\:\mathrm{0}.\: \\ $$

Question Number 11256    Answers: 1   Comments: 0

In the arithmetic progression, u_(1 ) =1.Given that u_(7 ) , u_(11) and u_(17) are in geometric progression, find the value of each.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{progression},\:\mathrm{u}_{\mathrm{1}\:} =\mathrm{1}.\mathrm{Given}\:\mathrm{that}\:\mathrm{u}_{\mathrm{7}\:} ,\:\mathrm{u}_{\mathrm{11}} \mathrm{and}\:\mathrm{u}_{\mathrm{17}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{geometric}\: \\ $$$$\mathrm{progression},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{each}. \\ $$

Question Number 11255    Answers: 1   Comments: 0

If the sum of the first 4 terms of an A.P., is p, the sum of the first 8 terms is q and the sum of the first 12 terms is r, express (3p+r) in terms of q.

$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{4}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.,\:\mathrm{is}\:\mathrm{p},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{8}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{12}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{r},\:\mathrm{express}\:\left(\mathrm{3p}+\mathrm{r}\right)\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{q}. \\ $$

Question Number 11089    Answers: 0   Comments: 1

for each n∈N, f_n (x)=nx(1−x^2 )^n for each x, 0≤x≤1 and a_n =∫_0 ^1 f_n (x)dx if s_n =sin(πa_n ), for each n∈N, then li_(n→∼) m s_n =....???

$${for}\:{each}\:{n}\in\mathbb{N},\:{f}_{{n}} \left({x}\right)={nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \\ $$$${for}\:{each}\:{x},\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:{a}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx} \\ $$$${if}\:{s}_{{n}} ={sin}\left(\pi{a}_{{n}} \right),\:{for}\:{each}\:{n}\in\mathbb{N},\:{then} \\ $$$${l}\underset{{n}\rightarrow\sim} {{i}m}\:{s}_{{n}} =....??? \\ $$

Question Number 11088    Answers: 0   Comments: 0

S={(n/(2m)) + ((6m)/n) : n,m∈N} inf(S)=...??? and sup(S)=...???

$${S}=\left\{\frac{{n}}{\mathrm{2}{m}}\:+\:\frac{\mathrm{6}{m}}{{n}}\::\:{n},{m}\in\mathbb{N}\right\} \\ $$$${inf}\left({S}\right)=...???\:{and}\:{sup}\left({S}\right)=...??? \\ $$

Question Number 11087    Answers: 0   Comments: 0

a<(π/2) if M<1 with ∣cos x−cos y∣≤M∣x−y∣ to each x,y∈[0,a] M=....???

$${a}<\frac{\pi}{\mathrm{2}} \\ $$$${if}\:{M}<\mathrm{1}\:{with}\:\mid{cos}\:{x}−{cos}\:{y}\mid\leqslant{M}\mid{x}−{y}\mid \\ $$$${to}\:{each}\:{x},{y}\in\left[\mathrm{0},{a}\right] \\ $$$${M}=....??? \\ $$

Question Number 11069    Answers: 0   Comments: 1

Question Number 10989    Answers: 1   Comments: 0

find the image of the point(5,2) under a rotation of 90° clockwise

$${find}\:{the}\:{image}\:{of}\:{the}\:{point}\left(\mathrm{5},\mathrm{2}\right)\: \\ $$$${under}\:{a}\:{rotation}\:{of}\:\mathrm{90}°\:{clockwise} \\ $$

Question Number 10914    Answers: 1   Comments: 0

A 200 N force inclined at 40° above the horizontal , drag load along the horizontal floor. coefficient of the kinetic friction between the load is 0.30 and the load experiences an acceleration of 1.2 m/s^2 , What is the mass of the load.

$$\mathrm{A}\:\mathrm{200}\:\mathrm{N}\:\mathrm{force}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{40}°\:\mathrm{above}\:\mathrm{the}\:\mathrm{horizontal}\:,\:\mathrm{drag}\:\mathrm{load}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{floor}.\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{load}\:\mathrm{is}\:\mathrm{0}.\mathrm{30}\: \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{load}\:\mathrm{experiences}\:\mathrm{an}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{1}.\mathrm{2}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} , \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{load}. \\ $$

Question Number 10908    Answers: 1   Comments: 0

Question Number 10900    Answers: 0   Comments: 1

Question Number 10899    Answers: 1   Comments: 0

  Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com