Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 150

Question Number 12773    Answers: 1   Comments: 0

Question Number 12683    Answers: 1   Comments: 0

A coil of inductance 0.12Hz and resistance 4 Ω is connected across a 240 v, 50 Hz is supplied . Calculate the current on the load (π = 3.142).

$$\mathrm{A}\:\mathrm{coil}\:\mathrm{of}\:\mathrm{inductance}\:\mathrm{0}.\mathrm{12Hz}\:\mathrm{and}\:\mathrm{resistance}\:\mathrm{4}\:\Omega\:\mathrm{is}\:\mathrm{connected}\:\mathrm{across}\:\mathrm{a}\:\mathrm{240}\:\mathrm{v},\: \\ $$$$\mathrm{50}\:\mathrm{Hz}\:\mathrm{is}\:\mathrm{supplied}\:.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{current}\:\mathrm{on}\:\mathrm{the}\:\mathrm{load}\:\left(\pi\:=\:\mathrm{3}.\mathrm{142}\right). \\ $$

Question Number 12672    Answers: 1   Comments: 0

Question Number 12655    Answers: 0   Comments: 0

Question Number 12631    Answers: 1   Comments: 0

Find tbe sloution set of (5/((x−3)(3+x))) > 0.

$$\:\:\mathrm{Find}\:\mathrm{tbe}\:\mathrm{sloution}\:\mathrm{set}\:\mathrm{of}\:\frac{\mathrm{5}}{\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{3}+\mathrm{x}\right)}\:>\:\mathrm{0}. \\ $$

Question Number 12612    Answers: 1   Comments: 0

Use Newtown Raphson method to find aproximate value of X=(√(((7/(x+1))))) ,starting with x_0 =2. perform 4 iteration and all iteration should be presented in 4 decimal places

$$\mathrm{Use}\:\mathrm{Newtown}\:\mathrm{Raphson}\:\mathrm{method}\:\mathrm{to}\:\mathrm{find}\:\mathrm{aproximate} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\boldsymbol{{X}}=\sqrt{\left(\frac{\mathrm{7}}{\boldsymbol{{x}}+\mathrm{1}}\right)}\:,\mathrm{starting}\:\mathrm{with}\:\boldsymbol{{x}}_{\mathrm{0}} =\mathrm{2}. \\ $$$$\boldsymbol{{perform}}\:\mathrm{4}\:\boldsymbol{{iteration}}\:\boldsymbol{{and}}\:\boldsymbol{{all}}\:\boldsymbol{{iteration}}\: \\ $$$$\boldsymbol{{should}}\:\boldsymbol{{be}}\:\boldsymbol{{presented}}\:\boldsymbol{{in}}\:\mathrm{4}\:\boldsymbol{{decimal}}\:\boldsymbol{{places}} \\ $$

Question Number 12611    Answers: 1   Comments: 0

A drum of mass 100g is rolled into the deck of a lorry 1.5m above a horizontal floor using a plank 4m long. calculate the workdone against gravity during the process. (g = 10m/s^2 ).

$$\mathrm{A}\:\mathrm{drum}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{100g}\:\mathrm{is}\:\mathrm{rolled}\:\mathrm{into}\:\mathrm{the}\:\mathrm{deck}\:\mathrm{of}\:\mathrm{a}\:\mathrm{lorry}\:\mathrm{1}.\mathrm{5m}\:\mathrm{above}\:\mathrm{a}\: \\ $$$$\mathrm{horizontal}\:\mathrm{floor}\:\mathrm{using}\:\mathrm{a}\:\mathrm{plank}\:\mathrm{4m}\:\mathrm{long}.\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{workdone}\:\mathrm{against} \\ $$$$\mathrm{gravity}\:\mathrm{during}\:\mathrm{the}\:\mathrm{process}.\:\left(\mathrm{g}\:=\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$

Question Number 12610    Answers: 1   Comments: 0

A steam engine of efficiency 50% burns a 1g of coal to produce 10000J of energy. if it burns 20g per sec, calculate the output power.

$$\mathrm{A}\:\mathrm{steam}\:\mathrm{engine}\:\mathrm{of}\:\mathrm{efficiency}\:\mathrm{50\%}\:\mathrm{burns}\:\mathrm{a}\:\mathrm{1g}\:\mathrm{of}\:\mathrm{coal}\:\mathrm{to}\:\mathrm{produce}\:\mathrm{10000J} \\ $$$$\mathrm{of}\:\mathrm{energy}.\:\mathrm{if}\:\mathrm{it}\:\mathrm{burns}\:\mathrm{20g}\:\mathrm{per}\:\mathrm{sec},\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{output}\:\mathrm{power}. \\ $$

Question Number 12517    Answers: 1   Comments: 0

A spring stretches by 15cm when a mass of 300g hangs down from it. if the spring is then strethed an additional 10cm and realeased, calculate (a) the spring constant (b) Angular velocity (c) The amplitude of the oscillation (d) The maximum velocity (e) The maximum acceleration of the mass (f) The period T and frequency f

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{stretches}\:\mathrm{by}\:\mathrm{15cm}\:\mathrm{when}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{300g}\:\mathrm{hangs}\:\mathrm{down}\:\mathrm{from}\:\mathrm{it}. \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{is}\:\mathrm{then}\:\mathrm{strethed}\:\mathrm{an}\:\mathrm{additional}\:\mathrm{10cm}\:\mathrm{and}\:\mathrm{realeased},\:\mathrm{calculate} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{the}\:\mathrm{spring}\:\mathrm{constant} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Angular}\:\mathrm{velocity} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{amplitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{oscillation} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{velocity} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mass} \\ $$$$\left(\mathrm{f}\right)\:\mathrm{The}\:\mathrm{period}\:\mathrm{T}\:\mathrm{and}\:\mathrm{frequency}\:\mathrm{f} \\ $$

Question Number 12419    Answers: 2   Comments: 0

If a body of 2kg mass is at a distance of 7200km from the centre of the earth . What would the acceleration due to gravity be at this point in the Earths field ? (a) 9.6m/s^2 (b) 10m/s^2 (c) 11.3m/s^2 (d) 12.7m/s^2 (e) 15.6m/s^2

$$\mathrm{If}\:\mathrm{a}\:\mathrm{body}\:\mathrm{of}\:\mathrm{2kg}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{7200km}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{earth}\:.\:\mathrm{What}\:\mathrm{would}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:\mathrm{be}\:\mathrm{at}\:\mathrm{this}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{Earths}\:\mathrm{field}\:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{9}.\mathrm{6m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{b}\right)\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{c}\right)\:\mathrm{11}.\mathrm{3m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{d}\right)\:\mathrm{12}.\mathrm{7m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{e}\right)\:\mathrm{15}.\mathrm{6m}/\mathrm{s}^{\mathrm{2}} \\ $$

Question Number 12405    Answers: 0   Comments: 1

how to prove that there exist infinitely many rationals between any two irrationals?

$${how}\:{to}\:{prove}\:{that}\:{there}\:{exist}\:{infinitely}\:{many}\:{rationals}\:{between}\:{any}\:{two}\:{irrationals}? \\ $$$$ \\ $$

Question Number 12394    Answers: 0   Comments: 0

Question Number 12331    Answers: 2   Comments: 0

Question Number 12321    Answers: 0   Comments: 0

When a known standard resistor of 2.0 Ω is connected to the 0.0 cm end of a meter bridge. The balance point is found to be at 55.0cm. What is the value of the resistor.

$$\mathrm{When}\:\mathrm{a}\:\mathrm{known}\:\mathrm{standard}\:\mathrm{resistor}\:\mathrm{of}\:\mathrm{2}.\mathrm{0}\:\Omega\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to}\:\mathrm{the}\:\mathrm{0}.\mathrm{0}\:\mathrm{cm}\:\mathrm{end}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{meter}\:\mathrm{bridge}.\:\mathrm{The}\:\mathrm{balance}\:\mathrm{point}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be}\:\mathrm{at}\:\mathrm{55}.\mathrm{0cm}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resistor}. \\ $$

Question Number 12319    Answers: 1   Comments: 0

Question Number 12316    Answers: 1   Comments: 0

What is the acceleration due to gravity , g, on the moon , if g is 10m/s^2 on the earth.

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:,\:\mathrm{g},\:\mathrm{on}\:\mathrm{the}\:\mathrm{moon}\:,\:\mathrm{if}\:\mathrm{g}\:\mathrm{is}\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{earth}. \\ $$

Question Number 12305    Answers: 1   Comments: 0

If c>0 and 4a+c<2b,then ax^2 −bx+c=0 has a root in which intervals? (a) (0,2) (b) (2,3) (c) (3,4) (d) (−2,0)

$${If}\:{c}>\mathrm{0}\:{and}\:\mathrm{4}{a}+{c}<\mathrm{2}{b},{then} \\ $$$${ax}^{\mathrm{2}} −{bx}+{c}=\mathrm{0}\:{has}\:{a}\:{root}\:{in}\:{which} \\ $$$${intervals}? \\ $$$$\left({a}\right)\:\:\left(\mathrm{0},\mathrm{2}\right) \\ $$$$\left({b}\right)\:\:\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left({c}\right)\:\:\left(\mathrm{3},\mathrm{4}\right) \\ $$$$\left({d}\right)\:\:\left(−\mathrm{2},\mathrm{0}\right) \\ $$

Question Number 12304    Answers: 1   Comments: 0

How many geometric progressions is/are possible contauning 27,8 and 12 as three of its/their terms? (a) 1 (b) 2 (c) 4 (d) infinitely many

$${How}\:{many}\:{geometric}\:{progressions} \\ $$$${is}/{are}\:{possible}\:{contauning}\:\mathrm{27},\mathrm{8} \\ $$$${and}\:\mathrm{12}\:{as}\:{three}\:{of}\:{its}/{their}\:{terms}? \\ $$$$\left({a}\right)\:\:\mathrm{1} \\ $$$$\left({b}\right)\:\:\mathrm{2} \\ $$$$\left({c}\right)\:\:\mathrm{4} \\ $$$$\left({d}\right)\:\:{infinitely}\:{many} \\ $$$$ \\ $$

Question Number 12207    Answers: 0   Comments: 0

Multi−point ∮(x)=x^3 well be equal to the values of the function ant its harvest.

$$\boldsymbol{\mathrm{Multi}}−\boldsymbol{\mathrm{point}}\:\:\:\oint\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:\boldsymbol{\mathrm{well}}\:\boldsymbol{\mathrm{be}} \\ $$$$\boldsymbol{\mathrm{equal}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{function}} \\ $$$$\boldsymbol{\mathrm{ant}}\:\:\boldsymbol{\mathrm{its}}\:\:\boldsymbol{\mathrm{harvest}}. \\ $$

Question Number 12077    Answers: 1   Comments: 0

A man travels 29 km on an open road at a certain speed. In the city, he reduce his speed by 420 km/hr, and he find that he take him the same time to cover 15 km, Find his average speed. (a) On the open road (b) In the city

$$\mathrm{A}\:\mathrm{man}\:\mathrm{travels}\:\mathrm{29}\:\mathrm{km}\:\mathrm{on}\:\mathrm{an}\:\mathrm{open}\:\mathrm{road}\:\mathrm{at}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{speed}.\:\mathrm{In}\:\mathrm{the}\:\mathrm{city},\:\mathrm{he}\: \\ $$$$\mathrm{reduce}\:\mathrm{his}\:\mathrm{speed}\:\mathrm{by}\:\mathrm{420}\:\mathrm{km}/\mathrm{hr},\:\mathrm{and}\:\mathrm{he}\:\mathrm{find}\:\mathrm{that}\:\mathrm{he}\:\mathrm{take}\:\mathrm{him}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time} \\ $$$$\mathrm{to}\:\mathrm{cover}\:\mathrm{15}\:\mathrm{km},\:\mathrm{Find}\:\mathrm{his}\:\mathrm{average}\:\mathrm{speed}.\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{On}\:\mathrm{the}\:\mathrm{open}\:\mathrm{road} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{In}\:\mathrm{the}\:\mathrm{city} \\ $$

Question Number 12064    Answers: 0   Comments: 0

A heat pump gas C.P = 3, while the indoor temperature is 27°C and the outdoor temperature is 8°C. How much work per hour is required to pump 3.07 J of heat per hour into the individual unit of 10^5 J.

$$\mathrm{A}\:\mathrm{heat}\:\mathrm{pump}\:\mathrm{gas}\:\mathrm{C}.\mathrm{P}\:=\:\mathrm{3},\:\mathrm{while}\:\mathrm{the}\:\mathrm{indoor}\:\mathrm{temperature}\:\mathrm{is}\:\mathrm{27}°\mathrm{C}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{outdoor}\:\mathrm{temperature}\:\mathrm{is}\:\mathrm{8}°\mathrm{C}.\:\mathrm{How}\:\mathrm{much}\:\mathrm{work}\:\mathrm{per}\:\mathrm{hour}\:\mathrm{is}\:\mathrm{required}\:\mathrm{to}\:\mathrm{pump} \\ $$$$\mathrm{3}.\mathrm{07}\:\mathrm{J}\:\mathrm{of}\:\mathrm{heat}\:\mathrm{per}\:\mathrm{hour}\:\mathrm{into}\:\mathrm{the}\:\mathrm{individual}\:\mathrm{unit}\:\mathrm{of}\:\mathrm{10}^{\mathrm{5}} \:\mathrm{J}.\: \\ $$

Question Number 12018    Answers: 0   Comments: 0

Question Number 11988    Answers: 2   Comments: 3

Question Number 11987    Answers: 1   Comments: 0

The radius of the moon is (1/4), and its mass is (1/(81)) that of the earth. If the acceleration due to gravity on the surface of the earth is 9.8m/s^2 . What is its value on the moon′s surface.

$$\mathrm{The}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{moon}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}},\:\mathrm{and}\:\mathrm{its}\:\mathrm{mass}\:\mathrm{is}\:\:\frac{\mathrm{1}}{\mathrm{81}}\:\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:\mathrm{on}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{is}\:\mathrm{9}.\mathrm{8m}/\mathrm{s}^{\mathrm{2}} .\:\mathrm{What} \\ $$$$\mathrm{is}\:\mathrm{its}\:\mathrm{value}\:\mathrm{on}\:\mathrm{the}\:\mathrm{moon}'\mathrm{s}\:\mathrm{surface}. \\ $$

Question Number 11968    Answers: 0   Comments: 0

A motorcyclist, passing a road junction , moves due east for 8 seconds at a uniform speed of 5 m/s. He then moves due north for another 6 seconds with the same speed. At the end of 6 seconds his displacement from the road junction is 50 m in the diretion of A) 53°E (B) 37°E (C) 53°W (D) 37°W

$$\mathrm{A}\:\mathrm{motorcyclist},\:\mathrm{passing}\:\mathrm{a}\:\mathrm{road}\:\mathrm{junction}\:,\:\mathrm{moves}\:\mathrm{due}\:\mathrm{east}\:\mathrm{for}\:\mathrm{8}\:\mathrm{seconds}\:\mathrm{at} \\ $$$$\mathrm{a}\:\mathrm{uniform}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{5}\:\mathrm{m}/\mathrm{s}.\:\mathrm{He}\:\mathrm{then}\:\mathrm{moves}\:\mathrm{due}\:\mathrm{north}\:\mathrm{for}\:\mathrm{another}\:\mathrm{6}\:\mathrm{seconds} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{same}\:\mathrm{speed}.\:\mathrm{At}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{6}\:\mathrm{seconds}\:\mathrm{his}\:\mathrm{displacement}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{road}\:\mathrm{junction}\:\mathrm{is}\:\mathrm{50}\:\mathrm{m}\:\mathrm{in}\:\mathrm{the}\:\mathrm{diretion}\:\mathrm{of} \\ $$$$\left.\mathrm{A}\right)\:\mathrm{53}°\mathrm{E}\:\:\left(\mathrm{B}\right)\:\:\mathrm{37}°\mathrm{E}\:\:\left(\mathrm{C}\right)\:\:\mathrm{53}°\mathrm{W}\:\:\left(\mathrm{D}\right)\:\:\mathrm{37}°\mathrm{W} \\ $$

Question Number 11966    Answers: 0   Comments: 0

If a force of 200N is used to pull a block of mass 30 kg up a plane inclined at 60° to the horizontal at a steady speed . Calculate the percentage efficiency of the incline plane.

$$\mathrm{If}\:\mathrm{a}\:\mathrm{force}\:\mathrm{of}\:\mathrm{200N}\:\mathrm{is}\:\mathrm{used}\:\mathrm{to}\:\mathrm{pull}\:\mathrm{a}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{30}\:\mathrm{kg}\:\mathrm{up}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{inclined} \\ $$$$\mathrm{at}\:\mathrm{60}°\:\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{at}\:\mathrm{a}\:\mathrm{steady}\:\mathrm{speed}\:.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{efficiency} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{incline}\:\mathrm{plane}. \\ $$

  Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com