Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 144

Question Number 16133    Answers: 1   Comments: 0

H_α line of Balmer series is 6500 A^o . The wave length of Hγ is (1) 4815 A^o (2) 4298 A^o (3) 7800 A^o (4) 3800 A^o

$$\mathrm{H}_{\alpha} \:\mathrm{line}\:\mathrm{of}\:\mathrm{Balmer}\:\mathrm{series}\:\mathrm{is}\:\mathrm{6500}\:\overset{\mathrm{o}} {\mathrm{A}}.\:\mathrm{The} \\ $$$$\mathrm{wave}\:\mathrm{length}\:\mathrm{of}\:\mathrm{H}\gamma\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{4815}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{4298}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{7800}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{3800}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$

Question Number 16102    Answers: 0   Comments: 0

Question Number 16081    Answers: 2   Comments: 0

A spherical balloon of 21 cm diameter is to be filled with hydrogen at NTP from a cylinder containing the gas at 20 atmosphere at 27°C. If the cylinder can hold 2.82 litres of water, calculate the number of balloons that can be filled up.

$$\mathrm{A}\:\mathrm{spherical}\:\mathrm{balloon}\:\mathrm{of}\:\mathrm{21}\:\mathrm{cm}\:\mathrm{diameter} \\ $$$$\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{filled}\:\mathrm{with}\:\mathrm{hydrogen}\:\mathrm{at}\:\mathrm{NTP} \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{cylinder}\:\mathrm{containing}\:\mathrm{the}\:\mathrm{gas}\:\mathrm{at} \\ $$$$\mathrm{20}\:\mathrm{atmosphere}\:\mathrm{at}\:\mathrm{27}°\mathrm{C}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{cylinder} \\ $$$$\mathrm{can}\:\mathrm{hold}\:\mathrm{2}.\mathrm{82}\:\mathrm{litres}\:\mathrm{of}\:\mathrm{water},\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{balloons}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{filled}\:\mathrm{up}. \\ $$

Question Number 16044    Answers: 1   Comments: 1

A particle is projected horizontally with speed u from point A, which is 10 m above the ground. If the particle hits the inclined plane perpendicularly at point B. [g = 10 m/s^2 ] Find horizontal speed with which the particle was projected.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{horizontally} \\ $$$$\mathrm{with}\:\mathrm{speed}\:{u}\:\mathrm{from}\:\mathrm{point}\:{A},\:\mathrm{which}\:\mathrm{is}\:\mathrm{10} \\ $$$$\mathrm{m}\:\mathrm{above}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{hits} \\ $$$$\mathrm{the}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{perpendicularly}\:\mathrm{at} \\ $$$$\mathrm{point}\:{B}.\:\left[{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right] \\ $$$$\mathrm{Find}\:\mathrm{horizontal}\:\mathrm{speed}\:\mathrm{with}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{was}\:\mathrm{projected}. \\ $$

Question Number 16079    Answers: 1   Comments: 1

An open flask contains air at 27°C. To what temperature it must be heated to expel one-fourth of the air?

$$\mathrm{An}\:\mathrm{open}\:\mathrm{flask}\:\mathrm{contains}\:\mathrm{air}\:\mathrm{at}\:\mathrm{27}°\mathrm{C}.\:\mathrm{To} \\ $$$$\mathrm{what}\:\mathrm{temperature}\:\mathrm{it}\:\mathrm{must}\:\mathrm{be}\:\mathrm{heated}\:\mathrm{to} \\ $$$$\mathrm{expel}\:\mathrm{one}-\mathrm{fourth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{air}? \\ $$

Question Number 16032    Answers: 0   Comments: 0

Question Number 16027    Answers: 0   Comments: 0

Question Number 15967    Answers: 1   Comments: 1

prove that (4cos9° − 3)(4cos27° − 3) = tan9°

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\left(\mathrm{4cos9}°\:−\:\mathrm{3}\right)\left(\mathrm{4cos27}°\:−\:\mathrm{3}\right)\:=\:\mathrm{tan9}° \\ $$

Question Number 15961    Answers: 0   Comments: 5

Path of a projectile as seen from another projectile is a (1) Straight line (2) Parabola (3) Ellipse (4) Hyperbola

$$\mathrm{Path}\:\mathrm{of}\:\mathrm{a}\:\mathrm{projectile}\:\mathrm{as}\:\mathrm{seen}\:\mathrm{from}\:\mathrm{another} \\ $$$$\mathrm{projectile}\:\mathrm{is}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Ellipse} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Hyperbola} \\ $$

Question Number 15955    Answers: 0   Comments: 2

The motion of a particle moving along x-axis is represented by the equation (dv/dt) = 6 − 3v, where v is in m/s and t is in second. If the particle is at rest at t = 0, then (1) The speed of the particle is 2 m/s when the acceleration of particle is zero (2) After a long time the particle moves with a constant velocity of 2 m/s (3) The speed is 0.1 m/s, when the acceleration is half of its initial value (4) The magnitude of final acceleration is 6 m/s^2

$$\mathrm{The}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{along} \\ $$$${x}-\mathrm{axis}\:\mathrm{is}\:\mathrm{represented}\:\mathrm{by}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\frac{{dv}}{{dt}}\:=\:\mathrm{6}\:−\:\mathrm{3}{v},\:\mathrm{where}\:{v}\:\mathrm{is}\:\mathrm{in}\:\mathrm{m}/\mathrm{s}\:\mathrm{and}\:{t}\:\mathrm{is} \\ $$$$\mathrm{in}\:\mathrm{second}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{at}\:{t}\:= \\ $$$$\mathrm{0},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{2}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{particle}\:\mathrm{is} \\ $$$$\mathrm{zero} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{After}\:\mathrm{a}\:\mathrm{long}\:\mathrm{time}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{moves} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{2}\:\mathrm{m}/\mathrm{s} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{is}\:\mathrm{0}.\mathrm{1}\:\mathrm{m}/\mathrm{s},\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{is}\:\mathrm{half}\:\mathrm{of}\:\mathrm{its}\:\mathrm{initial}\:\mathrm{value} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{The}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{final}\:\mathrm{acceleration} \\ $$$$\mathrm{is}\:\mathrm{6}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \\ $$

Question Number 15932    Answers: 1   Comments: 1

A particle is projected from the foot of an inclined plane having inclination 45°, with the velocity u at an angle θ (> 45°) with the horizontal in a vertical plane containing the line of greatest slope through the point of projection. Find the value of tan θ if the particle strikes the plane (i) Horizontally (ii) Normally

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{an}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{having}\:\mathrm{inclination} \\ $$$$\mathrm{45}°,\:\mathrm{with}\:\mathrm{the}\:\mathrm{velocity}\:{u}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta \\ $$$$\left(>\:\mathrm{45}°\right)\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{in}\:\mathrm{a}\:\mathrm{vertical} \\ $$$$\mathrm{plane}\:\mathrm{containing}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{greatest} \\ $$$$\mathrm{slope}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\theta\:\mathrm{if}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{strikes}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Horizontally} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Normally} \\ $$

Question Number 15939    Answers: 0   Comments: 1

Question Number 15906    Answers: 1   Comments: 0

If λ_1 and λ_2 are respectively the wavelengths of the series limit of Lyman and Balmer series of Hydrogen atom, then the wavelength of the first line of the Lyman series of the H-atom is (1) λ_1 − λ_2 (2) (√(λ_1 λ_2 )) (3) ((λ_2 − λ_1 )/(λ_1 λ_2 )) (4) ((λ_1 λ_2 )/(λ_2 − λ_1 ))

$$\mathrm{If}\:\lambda_{\mathrm{1}} \:\mathrm{and}\:\lambda_{\mathrm{2}} \:\mathrm{are}\:\mathrm{respectively}\:\mathrm{the} \\ $$$$\mathrm{wavelengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{Lyman} \\ $$$$\mathrm{and}\:\mathrm{Balmer}\:\mathrm{series}\:\mathrm{of}\:\mathrm{Hydrogen}\:\mathrm{atom}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{wavelength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{line}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Lyman}\:\mathrm{series}\:\mathrm{of}\:\mathrm{the}\:\mathrm{H}-\mathrm{atom}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\lambda_{\mathrm{1}} \:−\:\lambda_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\sqrt{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:\frac{\lambda_{\mathrm{2}} \:−\:\lambda_{\mathrm{1}} }{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\frac{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} }{\lambda_{\mathrm{2}} \:−\:\lambda_{\mathrm{1}} } \\ $$

Question Number 15881    Answers: 1   Comments: 1

Question Number 15880    Answers: 2   Comments: 0

Question Number 15856    Answers: 1   Comments: 0

A particle is moving along a straight line with uniform acceleration has velocities 7 m/s at P and 17 m/s at Q. If R is the midpoint of PQ, then the average velocity between P and R is?

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{with}\:\mathrm{uniform}\:\mathrm{acceleration}\:\mathrm{has} \\ $$$$\mathrm{velocities}\:\mathrm{7}\:\mathrm{m}/\mathrm{s}\:\mathrm{at}\:{P}\:\mathrm{and}\:\mathrm{17}\:\mathrm{m}/\mathrm{s}\:\mathrm{at}\:{Q}. \\ $$$$\mathrm{If}\:{R}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PQ},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{average}\:\mathrm{velocity}\:\mathrm{between}\:{P}\:\mathrm{and}\:{R}\:\mathrm{is}? \\ $$

Question Number 15850    Answers: 0   Comments: 0

Let (X, T) be any topological space . Verify that the intersection of any finite number of members of T is a member of T. Use mathematical induction to prove your result.

$$\mathrm{Let}\:\left(\mathrm{X},\:\mathrm{T}\right)\:\mathrm{be}\:\mathrm{any}\:\mathrm{topological}\:\mathrm{space}\:.\:\mathrm{Verify}\:\mathrm{that}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{of}\:\mathrm{any}\: \\ $$$$\mathrm{finite}\:\mathrm{number}\:\mathrm{of}\:\mathrm{members}\:\mathrm{of}\:\mathrm{T}\:\mathrm{is}\:\mathrm{a}\:\mathrm{member}\:\mathrm{of}\:\mathrm{T}.\:\mathrm{Use}\:\mathrm{mathematical} \\ $$$$\mathrm{induction}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{your}\:\mathrm{result}. \\ $$

Question Number 15832    Answers: 1   Comments: 0

A passenger in a train moving at an acceleration a, drops a stone from the window. A person, standing on the ground, by the sides of the rails, observes the ball falling (1) Vertically with an acceleration (√(g^2 + a^2 )) (2) Horizontally with an acceleration (√(g^2 + a^2 )) (3) Along a parabola with an acceleration (√(g^2 + a^2 )) (4) Along a parabola with an acceleration g

$$\mathrm{A}\:\mathrm{passenger}\:\mathrm{in}\:\mathrm{a}\:\mathrm{train}\:\mathrm{moving}\:\mathrm{at}\:\mathrm{an} \\ $$$$\mathrm{acceleration}\:{a},\:\mathrm{drops}\:\mathrm{a}\:\mathrm{stone}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{window}.\:\mathrm{A}\:\mathrm{person},\:\mathrm{standing}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{ground},\:\mathrm{by}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rails}, \\ $$$$\mathrm{observes}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{falling} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Vertically}\:\mathrm{with}\:\mathrm{an}\:\mathrm{acceleration} \\ $$$$\sqrt{{g}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Horizontally}\:\mathrm{with}\:\mathrm{an}\:\mathrm{acceleration} \\ $$$$\sqrt{{g}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Along}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{an}\:\mathrm{acceleration} \\ $$$$\sqrt{{g}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Along}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{an}\:\mathrm{acceleration} \\ $$$${g} \\ $$

Question Number 15821    Answers: 2   Comments: 2

Five engineers A,B,C,D and E can complete a process in 8 hours, assuming that every engineer works with the same efficiency. They started working at 10:00am. If after 4:00pm..,one engineer is removed from the group every hour,what is the time when they will finish the work? (a)6:00pm (b)7:00pm (c)4:00pm (d)8:00pm

$$\mathrm{Five}\:\mathrm{engineers}\:\mathrm{A},\mathrm{B},\mathrm{C},\mathrm{D}\:\mathrm{and}\:\mathrm{E}\:\mathrm{can} \\ $$$$\mathrm{complete}\:\mathrm{a}\:\mathrm{process}\:\mathrm{in}\:\mathrm{8}\:\mathrm{hours}, \\ $$$$\mathrm{assuming}\:\mathrm{that}\:\mathrm{every}\:\mathrm{engineer}\: \\ $$$$\mathrm{works}\:\mathrm{with}\:\mathrm{the}\:\mathrm{same}\:\mathrm{efficiency}. \\ $$$$\mathrm{They}\:\mathrm{started}\:\mathrm{working}\:\mathrm{at}\:\mathrm{10}:\mathrm{00am}. \\ $$$$\mathrm{If}\:\mathrm{after}\:\mathrm{4}:\mathrm{00pm}..,\mathrm{one}\:\mathrm{engineer}\:\mathrm{is} \\ $$$$\mathrm{removed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{group}\:\mathrm{every}\: \\ $$$$\mathrm{hour},\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{time}\:\mathrm{when}\:\mathrm{they} \\ $$$$\mathrm{will}\:\mathrm{finish}\:\mathrm{the}\:\mathrm{work}? \\ $$$$\left(\mathrm{a}\right)\mathrm{6}:\mathrm{00pm} \\ $$$$\left(\mathrm{b}\right)\mathrm{7}:\mathrm{00pm} \\ $$$$\left(\mathrm{c}\right)\mathrm{4}:\mathrm{00pm} \\ $$$$\left(\mathrm{d}\right)\mathrm{8}:\mathrm{00pm} \\ $$

Question Number 15800    Answers: 1   Comments: 0

ODE The rate at which the ice melt is proportional to the amount of ice present at the instant. Find the amount of ice left after 2 hours if half the quantity melt in 30 minute.

$$\mathrm{ODE} \\ $$$$\mathrm{The}\:\mathrm{rate}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\:\mathrm{ice}\:\mathrm{melt}\:\mathrm{is}\:\mathrm{proportional}\:\mathrm{to}\:\mathrm{the}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{ice}\:\mathrm{present} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{instant}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{ice}\:\mathrm{left}\:\mathrm{after}\:\mathrm{2}\:\mathrm{hours}\:\mathrm{if}\:\mathrm{half}\:\mathrm{the}\:\mathrm{quantity} \\ $$$$\mathrm{melt}\:\mathrm{in}\:\mathrm{30}\:\mathrm{minute}. \\ $$

Question Number 15740    Answers: 1   Comments: 0

Question Number 15734    Answers: 0   Comments: 3

An elastic cord can be stretched to its elastic limit by a load of 2N.If a 35cm lemgth of the cord is extended 0.6cm by a force of 0.5N, what will be the length of the cord when the stretching force is 2.5N? (a)350.8cm (b)352.8cm (c)353.0cm (d)356cm (e)cannot be determined from the data given

$$\mathrm{An}\:\mathrm{elastic}\:\mathrm{cord}\:\mathrm{can}\:\mathrm{be}\:\mathrm{stretched}\:\mathrm{to} \\ $$$$\mathrm{its}\:\mathrm{elastic}\:\mathrm{limit}\:\mathrm{by}\:\mathrm{a}\:\mathrm{load}\:\mathrm{of}\:\mathrm{2N}.\mathrm{If}\: \\ $$$$\mathrm{a}\:\mathrm{35cm}\:\mathrm{lemgth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cord}\:\mathrm{is} \\ $$$$\mathrm{extended}\:\mathrm{0}.\mathrm{6cm}\:\mathrm{by}\:\mathrm{a}\:\mathrm{force}\:\mathrm{of}\:\mathrm{0}.\mathrm{5N}, \\ $$$$\mathrm{what}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cord} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{stretching}\:\mathrm{force}\:\mathrm{is}\:\mathrm{2}.\mathrm{5N}? \\ $$$$\left(\mathrm{a}\right)\mathrm{350}.\mathrm{8cm} \\ $$$$\left(\mathrm{b}\right)\mathrm{352}.\mathrm{8cm} \\ $$$$\left(\mathrm{c}\right)\mathrm{353}.\mathrm{0cm} \\ $$$$\left(\mathrm{d}\right)\mathrm{356cm} \\ $$$$\left(\mathrm{e}\right)\mathrm{cannot}\:\mathrm{be}\:\mathrm{determined}\:\mathrm{from}\:\mathrm{the}\: \\ $$$$\mathrm{data}\:\mathrm{given} \\ $$

Question Number 15737    Answers: 0   Comments: 2

Sir mrW1 and Ajfour, please which advance or physics textbook pdf can i get

$$\mathrm{Sir}\:\:\:\mathrm{mrW1}\:\mathrm{and}\:\mathrm{Ajfour},\:\mathrm{please}\:\mathrm{which}\:\mathrm{advance}\:\mathrm{or}\:\mathrm{physics}\:\mathrm{textbook}\:\mathrm{pdf}\:\mathrm{can}\:\mathrm{i}\:\mathrm{get} \\ $$

Question Number 15610    Answers: 0   Comments: 3

The temperature of some 100 litres is 80°C. 10 litres water,whose temperature is 100°C is mixed in it.What will be the temperature of mixed water?

$$\mathrm{The}\:\mathrm{temperature}\:\mathrm{of}\:\mathrm{some}\:\mathrm{100}\:\mathrm{litres} \\ $$$$\mathrm{is}\:\mathrm{80}°\mathrm{C}.\:\:\mathrm{10}\:\mathrm{litres}\:\mathrm{water},\mathrm{whose}\:\mathrm{temperature} \\ $$$$\mathrm{is}\:\mathrm{100}°\mathrm{C}\:\mathrm{is}\:\mathrm{mixed}\:\mathrm{in}\:\mathrm{it}.\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{temperature}\:\mathrm{of}\:\mathrm{mixed}\:\mathrm{water}? \\ $$

Question Number 15599    Answers: 1   Comments: 0

Two paper screens A and B are separated by 100 m distance. A bullet pierces A and then B. The hole in B is 10 cm below the hole in A. If the bullet is travelling horizontally at A, calculate the velocity of the bullet at A. (Neglecting the types of frictional forces)

$$\mathrm{Two}\:\mathrm{paper}\:\mathrm{screens}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are} \\ $$$$\mathrm{separated}\:\mathrm{by}\:\mathrm{100}\:\mathrm{m}\:\mathrm{distance}.\:\mathrm{A}\:\mathrm{bullet} \\ $$$$\mathrm{pierces}\:{A}\:\mathrm{and}\:\mathrm{then}\:{B}.\:\mathrm{The}\:\mathrm{hole}\:\mathrm{in}\:{B}\:\mathrm{is} \\ $$$$\mathrm{10}\:\mathrm{cm}\:\mathrm{below}\:\mathrm{the}\:\mathrm{hole}\:\mathrm{in}\:{A}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{bullet} \\ $$$$\mathrm{is}\:\mathrm{travelling}\:\mathrm{horizontally}\:\mathrm{at}\:{A},\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bullet}\:\mathrm{at}\:{A}. \\ $$$$\left(\mathrm{Neglecting}\:\mathrm{the}\:\mathrm{types}\:\mathrm{of}\:\mathrm{frictional}\right. \\ $$$$\left.\mathrm{forces}\right) \\ $$

Question Number 15591    Answers: 1   Comments: 0

A projectile projected from the ground has its direction of motion making an angle (π/4) with the horizontal at a height 40 m. Its initial velocity of projection is 50 m/s, the angle of projection is?

$$\mathrm{A}\:\mathrm{projectile}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{has}\:\mathrm{its}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{making}\:\mathrm{an} \\ $$$$\mathrm{angle}\:\frac{\pi}{\mathrm{4}}\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height} \\ $$$$\mathrm{40}\:\mathrm{m}.\:\mathrm{Its}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{is} \\ $$$$\mathrm{50}\:\mathrm{m}/\mathrm{s},\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{is}? \\ $$

  Pg 139      Pg 140      Pg 141      Pg 142      Pg 143      Pg 144      Pg 145      Pg 146      Pg 147      Pg 148   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com