Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 140

Question Number 18940    Answers: 0   Comments: 3

A light rope is passed over a pulley such that at its one end a block is attached, and on the other end a boy is climbing up with acceleration (g/2) relative to rope. Mass of the block is 30 kg and that of the boy is 40 kg. Find the tension and acceleration of the rope.

$$\mathrm{A}\:\mathrm{light}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{passed}\:\mathrm{over}\:\mathrm{a}\:\mathrm{pulley}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{at}\:\mathrm{its}\:\mathrm{one}\:\mathrm{end}\:\mathrm{a}\:\mathrm{block}\:\mathrm{is}\:\mathrm{attached}, \\ $$$$\mathrm{and}\:\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{a}\:\mathrm{boy}\:\mathrm{is}\:\mathrm{climbing} \\ $$$$\mathrm{up}\:\mathrm{with}\:\mathrm{acceleration}\:\frac{{g}}{\mathrm{2}}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{rope}. \\ $$$$\mathrm{Mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{block}\:\mathrm{is}\:\mathrm{30}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{that}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{boy}\:\mathrm{is}\:\mathrm{40}\:\mathrm{kg}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{tension}\:\mathrm{and} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$

Question Number 18871    Answers: 0   Comments: 1

Question Number 18846    Answers: 0   Comments: 0

There are two crystalline forms of PbO ; one is yellow and the other is red. The standard enthalpies of formation of these two forms are −217.3 and −219 kJ per mole respectively. Calculate the enthalpy change for the solid-solid phase transition. PbO (yellow) → PbO (red)

$$\mathrm{There}\:\mathrm{are}\:\mathrm{two}\:\mathrm{crystalline}\:\mathrm{forms}\:\mathrm{of}\:\mathrm{PbO}\:; \\ $$$$\mathrm{one}\:\mathrm{is}\:\mathrm{yellow}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{is}\:\mathrm{red}.\:\mathrm{The} \\ $$$$\mathrm{standard}\:\mathrm{enthalpies}\:\mathrm{of}\:\mathrm{formation}\:\mathrm{of} \\ $$$$\mathrm{these}\:\mathrm{two}\:\mathrm{forms}\:\mathrm{are}\:−\mathrm{217}.\mathrm{3}\:\mathrm{and}\:−\mathrm{219} \\ $$$$\mathrm{kJ}\:\mathrm{per}\:\mathrm{mole}\:\mathrm{respectively}.\:\mathrm{Calculate}\:\mathrm{the} \\ $$$$\mathrm{enthalpy}\:\mathrm{change}\:\mathrm{for}\:\mathrm{the}\:\mathrm{solid}-\mathrm{solid} \\ $$$$\mathrm{phase}\:\mathrm{transition}. \\ $$$$\mathrm{PbO}\:\left(\mathrm{yellow}\right)\:\rightarrow\:\mathrm{PbO}\:\left(\mathrm{red}\right) \\ $$

Question Number 18886    Answers: 0   Comments: 0

Question Number 18851    Answers: 0   Comments: 0

Question Number 18763    Answers: 0   Comments: 3

Question Number 18749    Answers: 1   Comments: 1

Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in Cartesian co-ordinates A^→ = A_x i^∧ + A_y j^∧ where i^∧ and j^∧ are unit vector along x and y directions, respectively and A_x and A_y are corresponding components of A^→ (Figure). Motion can also be studied by expressing vectors in circular polar co-ordinates as A^→ = A_r r^∧ + A_θ θ^∧ where r^∧ = (r^→ /r) = cos θ i^∧ + sin θ j^∧ and θ^∧ = −sin θ i^∧ + cos θ j^∧ are unit vectors along direction in which ′r′ and ′θ′ are increasing. (a) Express i^∧ and j^∧ in terms of r^∧ and θ^∧ (b) Show that both r^∧ and θ^∧ are unit vectors and are perpendicular to each other. (c) Show that (d/dt)(r^∧ ) = ωθ^∧ where ω = (dθ/dt) and (d/dt)(θ^∧ ) = −ωr^∧ (d) For a particle moving along a spiral given by r^→ = αθr^∧ , where α = 1 (unit), find dimensions of ′α′. (e) Find velocity and acceleration in polar vector representation for particle moving along spiral described in (d) above.

$$\mathrm{Motion}\:\mathrm{in}\:\mathrm{two}\:\mathrm{dimensions},\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{studied}\:\mathrm{by}\:\mathrm{expressing}\:\mathrm{position}, \\ $$$$\mathrm{velocity}\:\mathrm{and}\:\mathrm{acceleration}\:\mathrm{as}\:\mathrm{vectors}\:\mathrm{in} \\ $$$$\mathrm{Cartesian}\:\mathrm{co}-\mathrm{ordinates}\:\overset{\rightarrow} {{A}}\:=\:{A}_{{x}} \overset{\wedge} {{i}}\:+\:{A}_{{y}} \overset{\wedge} {{j}} \\ $$$$\mathrm{where}\:\overset{\wedge} {{i}}\:\mathrm{and}\:\overset{\wedge} {{j}}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{along}\:{x} \\ $$$$\mathrm{and}\:{y}\:\mathrm{directions},\:\mathrm{respectively}\:\mathrm{and}\:{A}_{{x}} \\ $$$$\mathrm{and}\:{A}_{{y}} \:\mathrm{are}\:\mathrm{corresponding}\:\mathrm{components} \\ $$$$\mathrm{of}\:\overset{\rightarrow} {{A}}\:\left(\mathrm{Figure}\right).\:\mathrm{Motion}\:\mathrm{can}\:\mathrm{also}\:\mathrm{be} \\ $$$$\mathrm{studied}\:\mathrm{by}\:\mathrm{expressing}\:\mathrm{vectors}\:\mathrm{in}\:\mathrm{circular} \\ $$$$\mathrm{polar}\:\mathrm{co}-\mathrm{ordinates}\:\mathrm{as}\:\overset{\rightarrow} {{A}}\:=\:{A}_{{r}} \overset{\wedge} {{r}}\:+\:{A}_{\theta} \overset{\wedge} {\theta} \\ $$$$\mathrm{where}\:\overset{\wedge} {{r}}\:=\:\frac{\overset{\rightarrow} {{r}}}{{r}}\:=\:\mathrm{cos}\:\theta\:\overset{\wedge} {{i}}\:+\:\mathrm{sin}\:\theta\:\overset{\wedge} {{j}}\:\mathrm{and}\:\overset{\wedge} {\theta}\:= \\ $$$$−\mathrm{sin}\:\theta\:\overset{\wedge} {{i}}\:+\:\mathrm{cos}\:\theta\:\overset{\wedge} {{j}}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{vectors}\:\mathrm{along} \\ $$$$\mathrm{direction}\:\mathrm{in}\:\mathrm{which}\:'{r}'\:\mathrm{and}\:'\theta'\:\mathrm{are} \\ $$$$\mathrm{increasing}. \\ $$$$\left({a}\right)\:\mathrm{Express}\:\overset{\wedge} {{i}}\:\mathrm{and}\:\overset{\wedge} {{j}}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\overset{\wedge} {{r}}\:\mathrm{and}\:\overset{\wedge} {\theta} \\ $$$$\left({b}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{both}\:\overset{\wedge} {{r}}\:\mathrm{and}\:\overset{\wedge} {\theta}\:\mathrm{are}\:\mathrm{unit} \\ $$$$\mathrm{vectors}\:\mathrm{and}\:\mathrm{are}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{each} \\ $$$$\mathrm{other}. \\ $$$$\left({c}\right)\:\mathrm{Show}\:\mathrm{that}\:\frac{{d}}{{dt}}\left(\overset{\wedge} {{r}}\right)\:=\:\omega\overset{\wedge} {\theta}\:\mathrm{where} \\ $$$$\omega\:=\:\frac{{d}\theta}{{dt}}\:\mathrm{and}\:\frac{{d}}{{dt}}\left(\overset{\wedge} {\theta}\right)\:=\:−\omega\overset{\wedge} {{r}} \\ $$$$\left({d}\right)\:\mathrm{For}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{along}\:\mathrm{a}\:\mathrm{spiral} \\ $$$$\mathrm{given}\:\mathrm{by}\:\overset{\rightarrow} {{r}}\:=\:\alpha\theta\overset{\wedge} {{r}},\:\mathrm{where}\:\alpha\:=\:\mathrm{1}\:\left(\mathrm{unit}\right), \\ $$$$\mathrm{find}\:\mathrm{dimensions}\:\mathrm{of}\:'\alpha'. \\ $$$$\left({e}\right)\:\mathrm{Find}\:\mathrm{velocity}\:\mathrm{and}\:\mathrm{acceleration}\:\mathrm{in} \\ $$$$\mathrm{polar}\:\mathrm{vector}\:\mathrm{representation}\:\mathrm{for}\:\mathrm{particle} \\ $$$$\mathrm{moving}\:\mathrm{along}\:\mathrm{spiral}\:\mathrm{described}\:\mathrm{in}\:\left({d}\right) \\ $$$$\mathrm{above}. \\ $$

Question Number 18666    Answers: 1   Comments: 0

An elastic material has a length of 36cm when a load of 40N is hung on it and a length of 45cm when a load of 60N is hung on it. what is the Original length of the string ?

$$\mathrm{An}\:\mathrm{elastic}\:\mathrm{material}\:\mathrm{has}\:\mathrm{a}\:\mathrm{length}\:\mathrm{of}\:\:\mathrm{36cm}\:\mathrm{when}\:\mathrm{a}\:\mathrm{load}\:\mathrm{of}\:\mathrm{40N}\:\mathrm{is}\:\mathrm{hung}\:\mathrm{on}\:\mathrm{it}\:\mathrm{and} \\ $$$$\mathrm{a}\:\mathrm{length}\:\mathrm{of}\:\mathrm{45cm}\:\mathrm{when}\:\mathrm{a}\:\mathrm{load}\:\mathrm{of}\:\mathrm{60N}\:\mathrm{is}\:\mathrm{hung}\:\mathrm{on}\:\mathrm{it}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Original}\: \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{string}\:? \\ $$

Question Number 18645    Answers: 0   Comments: 0

Question Number 18624    Answers: 1   Comments: 0

Argon diffuses through a hole under prescribed condition of temperature and pressure at the rate of 3cm^3 per velocity. At what velocity will helium diffuse through the same hole under the same condition (Ar = 29.94 g, He = 4g).

$$\mathrm{Argon}\:\mathrm{diffuses}\:\mathrm{through}\:\mathrm{a}\:\mathrm{hole}\:\mathrm{under}\:\mathrm{prescribed}\:\mathrm{condition}\:\mathrm{of}\:\mathrm{temperature} \\ $$$$\mathrm{and}\:\mathrm{pressure}\:\mathrm{at}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\:\mathrm{3cm}^{\mathrm{3}} \:\mathrm{per}\:\mathrm{velocity}.\:\mathrm{At}\:\mathrm{what}\:\mathrm{velocity}\:\mathrm{will}\:\mathrm{helium}\: \\ $$$$\mathrm{diffuse}\:\mathrm{through}\:\mathrm{the}\:\mathrm{same}\:\mathrm{hole}\:\mathrm{under}\:\mathrm{the}\:\mathrm{same}\:\mathrm{condition}\: \\ $$$$\left(\mathrm{Ar}\:=\:\mathrm{29}.\mathrm{94}\:\mathrm{g},\:\:\mathrm{He}\:=\:\mathrm{4g}\right). \\ $$

Question Number 18614    Answers: 0   Comments: 1

Question Number 18607    Answers: 1   Comments: 1

A block of mass M is pulled vertically upward through a rope of mass m by applying force F on-one end of the rope. What force does the rope exert on the block?

$$\mathrm{A}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:{M}\:\mathrm{is}\:\mathrm{pulled}\:\mathrm{vertically} \\ $$$$\mathrm{upward}\:\mathrm{through}\:\mathrm{a}\:\mathrm{rope}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{by} \\ $$$$\mathrm{applying}\:\mathrm{force}\:{F}\:\mathrm{on}-\mathrm{one}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$$$\mathrm{What}\:\mathrm{force}\:\mathrm{does}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{exert}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{block}? \\ $$

Question Number 18603    Answers: 0   Comments: 0

The work function of a metal is 4 eV. If light of frequency 2.3 × 10^(15) Hz is incident on metal surface, then, (1) No photoelectron will be ejected (2) 2 photoelectron of zero kinetic energy are ejected (3) 1 photoelectron of zero kinetic energy is ejected (4) 1 photoelectron is ejected, which required the stopping potential of 5.52 volt

$$\mathrm{The}\:\mathrm{work}\:\mathrm{function}\:\mathrm{of}\:\mathrm{a}\:\mathrm{metal}\:\mathrm{is}\:\mathrm{4}\:\mathrm{eV}.\:\mathrm{If} \\ $$$$\mathrm{light}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{2}.\mathrm{3}\:×\:\mathrm{10}^{\mathrm{15}} \:\mathrm{Hz}\:\mathrm{is} \\ $$$$\mathrm{incident}\:\mathrm{on}\:\mathrm{metal}\:\mathrm{surface},\:\mathrm{then}, \\ $$$$\left(\mathrm{1}\right)\:\mathrm{No}\:\mathrm{photoelectron}\:\mathrm{will}\:\mathrm{be}\:\mathrm{ejected} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}\:\mathrm{photoelectron}\:\mathrm{of}\:\mathrm{zero}\:\mathrm{kinetic} \\ $$$$\mathrm{energy}\:\mathrm{are}\:\mathrm{ejected} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{1}\:\mathrm{photoelectron}\:\mathrm{of}\:\mathrm{zero}\:\mathrm{kinetic} \\ $$$$\mathrm{energy}\:\mathrm{is}\:\mathrm{ejected} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{1}\:\mathrm{photoelectron}\:\mathrm{is}\:\mathrm{ejected},\:\mathrm{which} \\ $$$$\mathrm{required}\:\mathrm{the}\:\mathrm{stopping}\:\mathrm{potential}\:\mathrm{of}\:\mathrm{5}.\mathrm{52} \\ $$$$\mathrm{volt} \\ $$

Question Number 18568    Answers: 0   Comments: 0

The energy required to dislodge electron from excited isolated H-atom, IE_1 = 13.6 eV is (1) = 13.6 eV (2) > 13.6 eV (3) < 13.6 eV and > 3.4 eV (4) ≤ 3.4 eV

$$\mathrm{The}\:\mathrm{energy}\:\mathrm{required}\:\mathrm{to}\:\mathrm{dislodge}\:\mathrm{electron} \\ $$$$\mathrm{from}\:\mathrm{excited}\:\mathrm{isolated}\:\mathrm{H}-\mathrm{atom},\:\mathrm{IE}_{\mathrm{1}} \:= \\ $$$$\mathrm{13}.\mathrm{6}\:\mathrm{eV}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:=\:\mathrm{13}.\mathrm{6}\:\mathrm{eV} \\ $$$$\left(\mathrm{2}\right)\:>\:\mathrm{13}.\mathrm{6}\:\mathrm{eV} \\ $$$$\left(\mathrm{3}\right)\:<\:\mathrm{13}.\mathrm{6}\:\mathrm{eV}\:\mathrm{and}\:>\:\mathrm{3}.\mathrm{4}\:\mathrm{eV} \\ $$$$\left(\mathrm{4}\right)\:\leqslant\:\mathrm{3}.\mathrm{4}\:\mathrm{eV} \\ $$

Question Number 18581    Answers: 1   Comments: 0

In moving a body of mass m up and down a rough incline plane of inclination θ, work done is (S is length of the planck, and μ is coefficient of friction).

$$\mathrm{In}\:\mathrm{moving}\:\mathrm{a}\:\mathrm{body}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{up}\:\mathrm{and} \\ $$$$\mathrm{down}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{incline}\:\mathrm{plane}\:\mathrm{of}\:\mathrm{inclination} \\ $$$$\theta,\:\mathrm{work}\:\mathrm{done}\:\mathrm{is}\:\left(\mathrm{S}\:\mathrm{is}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{planck},\right. \\ $$$$\left.\mathrm{and}\:\mu\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}\right). \\ $$

Question Number 18561    Answers: 0   Comments: 2

The acceleration of an object is given by a(t) = cos(nπ), and its velocity at time t = 0 is (1/(2π)). Find both the net and the total distance traveled in the first 1.5 seconds.

$$\mathrm{The}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{a}\left(\mathrm{t}\right)\:=\:\mathrm{cos}\left(\mathrm{n}\pi\right),\:\mathrm{and}\:\mathrm{its}\:\mathrm{velocity} \\ $$$$\mathrm{at}\:\mathrm{time}\:\mathrm{t}\:=\:\mathrm{0}\:\mathrm{is}\:\:\:\frac{\mathrm{1}}{\mathrm{2}\pi}.\:\mathrm{Find}\:\mathrm{both}\:\mathrm{the}\:\mathrm{net}\:\mathrm{and}\:\mathrm{the}\:\mathrm{total}\:\mathrm{distance}\:\mathrm{traveled}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{first}\:\:\mathrm{1}.\mathrm{5}\:\mathrm{seconds}. \\ $$

Question Number 18549    Answers: 0   Comments: 0

A particle of mass 1 gram executes an oscillatory motion on the concave surface of a spherical dish of radius 2 m, placed on a horizontal plane. If the motion of the particle starts from a point on the dish at the height of 1 cm from the horizontal plane and the coefficient of friction is 0.01, how much total distance will be moved by the particle before it comes to rest?

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}\:\mathrm{gram}\:\mathrm{executes}\:\mathrm{an} \\ $$$$\mathrm{oscillatory}\:\mathrm{motion}\:\mathrm{on}\:\mathrm{the}\:\mathrm{concave} \\ $$$$\mathrm{surface}\:\mathrm{of}\:\mathrm{a}\:\mathrm{spherical}\:\mathrm{dish}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{2}\:\mathrm{m}, \\ $$$$\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{plane}.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{a} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{dish}\:\mathrm{at}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{1}\:\mathrm{cm} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{is}\:\mathrm{0}.\mathrm{01},\:\mathrm{how}\:\mathrm{much} \\ $$$$\mathrm{total}\:\mathrm{distance}\:\mathrm{will}\:\mathrm{be}\:\mathrm{moved}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{before}\:\mathrm{it}\:\mathrm{comes}\:\mathrm{to}\:\mathrm{rest}? \\ $$

Question Number 18530    Answers: 1   Comments: 0

In an atom the last electron is present in f-orbital and for its outermost shell the graph of Ψ^2 has 6 maximas. What is the sum of group and period of that element?

$$\mathrm{In}\:\mathrm{an}\:\mathrm{atom}\:\mathrm{the}\:\mathrm{last}\:\mathrm{electron}\:\mathrm{is}\:\mathrm{present} \\ $$$$\mathrm{in}\:{f}-\mathrm{orbital}\:\mathrm{and}\:\mathrm{for}\:\mathrm{its}\:\mathrm{outermost}\:\mathrm{shell} \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\Psi^{\mathrm{2}} \:\mathrm{has}\:\mathrm{6}\:\mathrm{maximas}.\:\mathrm{What} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{group}\:\mathrm{and}\:\mathrm{period}\:\mathrm{of}\:\mathrm{that} \\ $$$$\mathrm{element}? \\ $$

Question Number 18502    Answers: 1   Comments: 0

The second overtone of a fixed viberating string fixed at both end is 200cm. Find the length of the string.

$$\mathrm{The}\:\mathrm{second}\:\mathrm{overtone}\:\mathrm{of}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{viberating}\:\mathrm{string}\:\mathrm{fixed}\:\mathrm{at}\:\mathrm{both}\:\mathrm{end}\:\mathrm{is}\:\mathrm{200cm}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{string}. \\ $$

Question Number 18493    Answers: 1   Comments: 1

Draw the free body diagram of following system:

$$\mathrm{Draw}\:\mathrm{the}\:\mathrm{free}\:\mathrm{body}\:\mathrm{diagram}\:\mathrm{of}\:\mathrm{following} \\ $$$$\mathrm{system}: \\ $$

Question Number 18486    Answers: 0   Comments: 0

Why ionic radii of^(35) Cl <^(37) Cl^− ?

$$\mathrm{Why}\:\mathrm{ionic}\:\mathrm{radii}\:\mathrm{of}\:^{\mathrm{35}} \mathrm{Cl}\:<\:^{\mathrm{37}} \mathrm{Cl}^{−} ? \\ $$

Question Number 18463    Answers: 1   Comments: 0

The solid angle subtended by a spherical surface of radius R at its centre is (π/2) steradian, then the surface area of corresponding spherical section is

$$\mathrm{The}\:\mathrm{solid}\:\mathrm{angle}\:\mathrm{subtended}\:\mathrm{by}\:\mathrm{a}\:\mathrm{spherical} \\ $$$$\mathrm{surface}\:\mathrm{of}\:\mathrm{radius}\:{R}\:\mathrm{at}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{is}\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{steradian},\:\mathrm{then}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{corresponding}\:\mathrm{spherical}\:\mathrm{section}\:\mathrm{is} \\ $$

Question Number 18460    Answers: 1   Comments: 0

Question Number 18440    Answers: 0   Comments: 0

Question Number 18428    Answers: 0   Comments: 0

Question Number 18415    Answers: 1   Comments: 1

Calculate the magnetic field produced at ground level by a 15A current flowing in a long horizontal wire suspended at a height of 7.5m

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{produced}\:\mathrm{at}\:\mathrm{ground}\:\mathrm{level}\:\mathrm{by}\:\mathrm{a}\:\mathrm{15A}\:\mathrm{current} \\ $$$$\mathrm{flowing}\:\mathrm{in}\:\mathrm{a}\:\mathrm{long}\:\mathrm{horizontal}\:\mathrm{wire}\:\mathrm{suspended}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{7}.\mathrm{5m} \\ $$

  Pg 135      Pg 136      Pg 137      Pg 138      Pg 139      Pg 140      Pg 141      Pg 142      Pg 143      Pg 144   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com