Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 135

Question Number 21388    Answers: 0   Comments: 4

A block of mass m is connected with another block of mass 2m by a light spring. 2m is connected with a hanging mass 3m by an inextensible light string. At the time of release of block 3m, find tension in the string and acceleration of all the masses.

$$\mathrm{A}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{with} \\ $$$$\mathrm{another}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}{m}\:\mathrm{by}\:\mathrm{a}\:\mathrm{light} \\ $$$$\mathrm{spring}.\:\mathrm{2}{m}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{with}\:\mathrm{a}\:\mathrm{hanging} \\ $$$$\mathrm{mass}\:\mathrm{3}{m}\:\mathrm{by}\:\mathrm{an}\:\mathrm{inextensible}\:\mathrm{light}\:\mathrm{string}. \\ $$$$\mathrm{At}\:\mathrm{the}\:\mathrm{time}\:\mathrm{of}\:\mathrm{release}\:\mathrm{of}\:\mathrm{block}\:\mathrm{3}{m},\:\mathrm{find} \\ $$$$\mathrm{tension}\:\mathrm{in}\:\mathrm{the}\:\mathrm{string}\:\mathrm{and}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{masses}. \\ $$

Question Number 21377    Answers: 0   Comments: 0

Balls are dropped from the roof of a tower at a fixed interval of time. At the moment when 9th ball reaches the ground the nth ball is (3/4)th height of the tower. What is the value of n?

$$\mathrm{Balls}\:\mathrm{are}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{roof}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{tower}\:\mathrm{at}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{time}.\:\mathrm{At}\:\mathrm{the} \\ $$$$\mathrm{moment}\:\mathrm{when}\:\mathrm{9th}\:\mathrm{ball}\:\mathrm{reaches}\:\mathrm{the} \\ $$$$\mathrm{ground}\:\mathrm{the}\:{n}\mathrm{th}\:\mathrm{ball}\:\mathrm{is}\:\left(\mathrm{3}/\mathrm{4}\right)\mathrm{th}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{tower}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{n}? \\ $$

Question Number 21295    Answers: 1   Comments: 0

For a particle performing uniform circular motion, angular momentum is constant in magnitude but direction keeps changing. Am I right or wrong?

$$\mathrm{For}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{performing}\:\mathrm{uniform} \\ $$$$\mathrm{circular}\:\mathrm{motion},\:\mathrm{angular}\:\mathrm{momentum}\:\mathrm{is} \\ $$$$\mathrm{constant}\:\mathrm{in}\:\mathrm{magnitude}\:\mathrm{but}\:\mathrm{direction} \\ $$$$\mathrm{keeps}\:\mathrm{changing}. \\ $$$$\mathrm{Am}\:\mathrm{I}\:\mathrm{right}\:\mathrm{or}\:\mathrm{wrong}? \\ $$

Question Number 21282    Answers: 0   Comments: 0

soit (u_n )_(n∈N^∗ ) une suite a termes positifs telle que: ∀n∈N^∗ ,Σ_(k=1) ^n u_k ^3 =(Σ_(k=1) ^n u_k )^2 montrer que ∀n∈N^∗ , u_n =n

$${soit}\:\left({u}_{{n}} \right)_{{n}\in\mathbb{N}^{\ast} } {une}\:{suite}\:{a}\:{termes}\:{positifs}\:{telle}\:{que}: \\ $$$$\forall{n}\in\mathbb{N}^{\ast} ,\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{k}} ^{\mathrm{3}} =\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{k}} \right)^{\mathrm{2}} \\ $$$${montrer}\:{que}\:\forall{n}\in\mathbb{N}^{\ast} ,\:{u}_{{n}} ={n} \\ $$

Question Number 21276    Answers: 1   Comments: 0

Question Number 21249    Answers: 0   Comments: 1

A particle slides down a frictionless parabolic (y = x^2 ) track (A − B − C) starting from rest at point A. Point B is at the vertex of parabola and point C is at a height less than that of point A. After C, the particle moves freely in air as a projectile. If the particle reaches highest point at P, then (a) KE at P = KE at B (b) height at P = height at A (c) total energy at P = total energy at A (d) time of travel from A to B = time of travel from B to P.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{slides}\:\mathrm{down}\:\mathrm{a}\:\mathrm{frictionless} \\ $$$$\mathrm{parabolic}\:\left({y}\:=\:{x}^{\mathrm{2}} \right)\:\mathrm{track}\:\left({A}\:−\:{B}\:−\:{C}\right) \\ $$$$\mathrm{starting}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{at}\:\mathrm{point}\:{A}.\:\mathrm{Point}\:{B} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{vertex}\:\mathrm{of}\:\mathrm{parabola}\:\mathrm{and}\:\mathrm{point}\:{C} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{less}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{point}\:{A}. \\ $$$$\mathrm{After}\:{C},\:\mathrm{the}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{freely}\:\mathrm{in}\:\mathrm{air} \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{projectile}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{reaches} \\ $$$$\mathrm{highest}\:\mathrm{point}\:\mathrm{at}\:{P},\:\mathrm{then} \\ $$$$\left({a}\right)\:\mathrm{KE}\:\mathrm{at}\:{P}\:=\:\mathrm{KE}\:\mathrm{at}\:{B} \\ $$$$\left({b}\right)\:\mathrm{height}\:\mathrm{at}\:{P}\:=\:\mathrm{height}\:\mathrm{at}\:{A} \\ $$$$\left({c}\right)\:\mathrm{total}\:\mathrm{energy}\:\mathrm{at}\:{P}\:=\:\mathrm{total}\:\mathrm{energy}\:\mathrm{at} \\ $$$${A} \\ $$$$\left({d}\right)\:\mathrm{time}\:\mathrm{of}\:\mathrm{travel}\:\mathrm{from}\:{A}\:\mathrm{to}\:{B}\:=\:\mathrm{time}\:\mathrm{of} \\ $$$$\mathrm{travel}\:\mathrm{from}\:{B}\:\mathrm{to}\:{P}. \\ $$

Question Number 21224    Answers: 0   Comments: 1

One mole of a monoatomic real gas satisfies the equation p(V − b) = RT where b is a constant. The relationship of interatomic potential V(r) and interatomic distance r for the gas is given by

$$\mathrm{One}\:\mathrm{mole}\:\mathrm{of}\:\mathrm{a}\:\mathrm{monoatomic}\:\mathrm{real}\:\mathrm{gas} \\ $$$$\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{p}\left(\mathrm{V}\:−\:\mathrm{b}\right)\:=\:\mathrm{RT} \\ $$$$\mathrm{where}\:\mathrm{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}.\:\mathrm{The}\:\mathrm{relationship} \\ $$$$\mathrm{of}\:\mathrm{interatomic}\:\mathrm{potential}\:\mathrm{V}\left(\mathrm{r}\right)\:\mathrm{and} \\ $$$$\mathrm{interatomic}\:\mathrm{distance}\:\mathrm{r}\:\mathrm{for}\:\mathrm{the}\:\mathrm{gas}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by} \\ $$

Question Number 21150    Answers: 0   Comments: 8

Two particles of mass m each are tied at the ends of a light string of length 2a. The whole system is kept on a frictionless horizontal surface with the string held tight so that each mass is at a distance ′a′ from the center P (as shown in the figure). Now, the mid-point of the string is pulled vertically upwards with a small but constant force F. As a result, the particles move towards each other on the surface. The magnitude of acceleration, when the separation between them becomes 2x, is

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{each}\:\mathrm{are}\:\mathrm{tied} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{a}\:\mathrm{light}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length}\:\mathrm{2}{a}. \\ $$$$\mathrm{The}\:\mathrm{whole}\:\mathrm{system}\:\mathrm{is}\:\mathrm{kept}\:\mathrm{on}\:\mathrm{a}\:\mathrm{frictionless} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}\:\mathrm{with}\:\mathrm{the}\:\mathrm{string}\:\mathrm{held} \\ $$$$\mathrm{tight}\:\mathrm{so}\:\mathrm{that}\:\mathrm{each}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance} \\ $$$$'{a}'\:\mathrm{from}\:\mathrm{the}\:\mathrm{center}\:{P}\:\left(\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{figure}\right).\:\mathrm{Now},\:\mathrm{the}\:\mathrm{mid}-\mathrm{point}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{string}\:\mathrm{is}\:\mathrm{pulled}\:\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{with} \\ $$$$\mathrm{a}\:\mathrm{small}\:\mathrm{but}\:\mathrm{constant}\:\mathrm{force}\:{F}.\:\mathrm{As}\:\mathrm{a}\:\mathrm{result}, \\ $$$$\mathrm{the}\:\mathrm{particles}\:\mathrm{move}\:\mathrm{towards}\:\mathrm{each}\:\mathrm{other} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{surface}.\:\mathrm{The}\:\mathrm{magnitude}\:\mathrm{of} \\ $$$$\mathrm{acceleration},\:\mathrm{when}\:\mathrm{the}\:\mathrm{separation} \\ $$$$\mathrm{between}\:\mathrm{them}\:\mathrm{becomes}\:\mathrm{2}{x},\:\mathrm{is} \\ $$

Question Number 21148    Answers: 0   Comments: 12

Find the compression in the spring if the system shown below is in equilibrium.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{compression}\:\mathrm{in}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{if} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{below}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}. \\ $$

Question Number 21145    Answers: 0   Comments: 7

Figure shows an arrangement of blocks, pulley and strings. Strings and pulley are massless and frictionless. The relation between acceleration of the blocks as shown in the figure is

$$\mathrm{Figure}\:\mathrm{shows}\:\mathrm{an}\:\mathrm{arrangement}\:\mathrm{of}\:\mathrm{blocks}, \\ $$$$\mathrm{pulley}\:\mathrm{and}\:\mathrm{strings}.\:\mathrm{Strings}\:\mathrm{and}\:\mathrm{pulley} \\ $$$$\mathrm{are}\:\mathrm{massless}\:\mathrm{and}\:\mathrm{frictionless}.\:\mathrm{The} \\ $$$$\mathrm{relation}\:\mathrm{between}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{is} \\ $$

Question Number 21131    Answers: 0   Comments: 4

Figure shows a small bob of mass m suspended from a point on a thin rod by a light inextensible string of length l. The rod is rigidly fixed on a circular platform. The platform is set into rotation. The minimum angular speed ω, for which the bob loses contact with the vertical rod, is (1) (√(g/l)) (2) (√((2g)/l)) (3) (√(g/(2l))) (4) (√(g/(4l)))

$$\mathrm{Figure}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{small}\:\mathrm{bob}\:\mathrm{of}\:\mathrm{mass}\:{m} \\ $$$$\mathrm{suspended}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{a}\:\mathrm{thin}\:\mathrm{rod} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{light}\:\mathrm{inextensible}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length} \\ $$$${l}.\:\mathrm{The}\:\mathrm{rod}\:\mathrm{is}\:\mathrm{rigidly}\:\mathrm{fixed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{circular} \\ $$$$\mathrm{platform}.\:\mathrm{The}\:\mathrm{platform}\:\mathrm{is}\:\mathrm{set}\:\mathrm{into} \\ $$$$\mathrm{rotation}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{angular}\:\mathrm{speed} \\ $$$$\omega,\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{bob}\:\mathrm{loses}\:\mathrm{contact}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{vertical}\:\mathrm{rod},\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\sqrt{\frac{{g}}{{l}}} \\ $$$$\left(\mathrm{2}\right)\:\sqrt{\frac{\mathrm{2}{g}}{{l}}} \\ $$$$\left(\mathrm{3}\right)\:\sqrt{\frac{{g}}{\mathrm{2}{l}}} \\ $$$$\left(\mathrm{4}\right)\:\sqrt{\frac{{g}}{\mathrm{4}{l}}} \\ $$

Question Number 21124    Answers: 2   Comments: 0

Question Number 21112    Answers: 0   Comments: 0

A ball is bouncing elastically with a speed 1 m/s between walls of a railway compartment of size 10 m in a direction perpendicular to walls. The train is moving at a constant velocity of 10 m/s parallel to the direction of motion of the ball. As seen from the ground (a) the direction of motion of the ball changes every 10 seconds. (b) speed of ball changes every 10 seconds. (c) average speed of ball over any 20 second interval is fixed. (d) the acceleration of ball is the same as from the train.

$$\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{bouncing}\:\mathrm{elastically}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{speed}\:\mathrm{1}\:\mathrm{m}/\mathrm{s}\:\mathrm{between}\:\mathrm{walls}\:\mathrm{of}\:\mathrm{a}\:\mathrm{railway} \\ $$$$\mathrm{compartment}\:\mathrm{of}\:\mathrm{size}\:\mathrm{10}\:\mathrm{m}\:\mathrm{in}\:\mathrm{a}\:\mathrm{direction} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{walls}.\:\mathrm{The}\:\mathrm{train}\:\mathrm{is} \\ $$$$\mathrm{moving}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{10}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{ball}.\:\mathrm{As}\:\mathrm{seen}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\left({a}\right)\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball} \\ $$$$\mathrm{changes}\:\mathrm{every}\:\mathrm{10}\:\mathrm{seconds}. \\ $$$$\left({b}\right)\:\mathrm{speed}\:\mathrm{of}\:\mathrm{ball}\:\mathrm{changes}\:\mathrm{every}\:\mathrm{10} \\ $$$$\mathrm{seconds}. \\ $$$$\left({c}\right)\:\mathrm{average}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{ball}\:\mathrm{over}\:\mathrm{any}\:\mathrm{20} \\ $$$$\mathrm{second}\:\mathrm{interval}\:\mathrm{is}\:\mathrm{fixed}. \\ $$$$\left({d}\right)\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{as}\:\mathrm{from}\:\mathrm{the}\:\mathrm{train}. \\ $$

Question Number 21109    Answers: 0   Comments: 2

STATEMENT-1 : The locus of z, if arg(((z − 1)/(z + 1))) = (π/2) is a circle. and STATEMENT-2 : ∣((z − 2)/(z + 2))∣ = (π/2), then the locus of z is a circle.

$$\mathrm{STATEMENT}-\mathrm{1}\::\:\mathrm{The}\:\mathrm{locus}\:\mathrm{of}\:{z},\:\mathrm{if} \\ $$$$\mathrm{arg}\left(\frac{{z}\:−\:\mathrm{1}}{{z}\:+\:\mathrm{1}}\right)\:=\:\frac{\pi}{\mathrm{2}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}. \\ $$$$\boldsymbol{\mathrm{and}} \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\mid\frac{{z}\:−\:\mathrm{2}}{{z}\:+\:\mathrm{2}}\mid\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}. \\ $$

Question Number 21100    Answers: 0   Comments: 1

if 3^(2n+3) =m,find 3^(−n)

$$\mathrm{if}\:\mathrm{3}^{\mathrm{2n}+\mathrm{3}} =\mathrm{m},\mathrm{find}\:\mathrm{3}^{−\mathrm{n}} \\ $$

Question Number 21097    Answers: 1   Comments: 0

Suppose in the plane 10 pairwise nonparallel lines intersect one another. What is the maximum possible number of polygons (with finite areas) that can be formed?

$$\mathrm{Suppose}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{10}\:\mathrm{pairwise} \\ $$$$\mathrm{nonparallel}\:\mathrm{lines}\:\mathrm{intersect}\:\mathrm{one}\:\mathrm{another}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{polygons}\:\left(\mathrm{with}\:\mathrm{finite}\:\mathrm{areas}\right)\:\mathrm{that}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{formed}? \\ $$

Question Number 21071    Answers: 2   Comments: 0

The values of ′k′ for which the equation ∣x∣^2 (∣x∣^2 − 2k + 1) = 1 − k^2 , has repeated roots, when k belongs to (1) {1, −1} (2) {0, 1} (3) {0, −1} (4) {2, 3}

$$\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:'{k}'\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mid{x}\mid^{\mathrm{2}} \left(\mid{x}\mid^{\mathrm{2}} \:−\:\mathrm{2}{k}\:+\:\mathrm{1}\right)\:=\:\mathrm{1}\:−\:{k}^{\mathrm{2}} ,\:\mathrm{has} \\ $$$$\mathrm{repeated}\:\mathrm{roots},\:\mathrm{when}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$$$\left(\mathrm{1}\right)\:\left\{\mathrm{1},\:−\mathrm{1}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left\{\mathrm{0},\:\mathrm{1}\right\} \\ $$$$\left(\mathrm{3}\right)\:\left\{\mathrm{0},\:−\mathrm{1}\right\} \\ $$$$\left(\mathrm{4}\right)\:\left\{\mathrm{2},\:\mathrm{3}\right\} \\ $$

Question Number 21070    Answers: 1   Comments: 2

Let us consider an equation f(x) = x^3 − 3x + k = 0. Then the values of k for which the equation has 1. Exactly one root which is positive, then k belongs to 2. Exactly one root which is negative, then k belongs to 3. One negative and two positive root if k belongs to

$$\mathrm{Let}\:\mathrm{us}\:\mathrm{consider}\:\mathrm{an}\:\mathrm{equation}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \\ $$$$−\:\mathrm{3}{x}\:+\:{k}\:=\:\mathrm{0}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{k}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{has} \\ $$$$\mathrm{1}.\:\mathrm{Exactly}\:\mathrm{one}\:\mathrm{root}\:\mathrm{which}\:\mathrm{is}\:\mathrm{positive}, \\ $$$$\mathrm{then}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$$$\mathrm{2}.\:\mathrm{Exactly}\:\mathrm{one}\:\mathrm{root}\:\mathrm{which}\:\mathrm{is}\:\mathrm{negative}, \\ $$$$\mathrm{then}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$$$\mathrm{3}.\:\mathrm{One}\:\mathrm{negative}\:\mathrm{and}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{root} \\ $$$$\mathrm{if}\:{k}\:\mathrm{belongs}\:\mathrm{to} \\ $$

Question Number 21048    Answers: 0   Comments: 0

If the equation 2cos2x − (a + 7)cosx + 3a − 13 = 0 possesses atleast one real solution, then the maximum integral value of ′a′ can be

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{2cos2}{x}\:−\:\left({a}\:+\:\mathrm{7}\right)\mathrm{cos}{x}\:+ \\ $$$$\mathrm{3}{a}\:−\:\mathrm{13}\:=\:\mathrm{0}\:\mathrm{possesses}\:\mathrm{atleast}\:\mathrm{one}\:\mathrm{real} \\ $$$$\mathrm{solution},\:\mathrm{then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{integral} \\ $$$$\mathrm{value}\:\mathrm{of}\:'{a}'\:\mathrm{can}\:\mathrm{be} \\ $$

Question Number 21029    Answers: 0   Comments: 0

Question Number 21012    Answers: 1   Comments: 3

A spring with one end attached to a mass and the other to a rigid support is stretched and released. (a) Magnitude of acceleration, when just released is maximum. (b) Magnitude of acceleration, when at equilibrium position, is maximum. (c) Speed is maximum when mass is at equilibrium position. (d) Magnitude of displacement is always maximum whenever speed is minimum.

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{with}\:\mathrm{one}\:\mathrm{end}\:\mathrm{attached}\:\mathrm{to}\:\mathrm{a} \\ $$$$\mathrm{mass}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{to}\:\mathrm{a}\:\mathrm{rigid}\:\mathrm{support}\:\mathrm{is} \\ $$$$\mathrm{stretched}\:\mathrm{and}\:\mathrm{released}. \\ $$$$\left({a}\right)\:\mathrm{Magnitude}\:\mathrm{of}\:\mathrm{acceleration},\:\mathrm{when} \\ $$$$\mathrm{just}\:\mathrm{released}\:\mathrm{is}\:\mathrm{maximum}. \\ $$$$\left({b}\right)\:\mathrm{Magnitude}\:\mathrm{of}\:\mathrm{acceleration},\:\mathrm{when} \\ $$$$\mathrm{at}\:\mathrm{equilibrium}\:\mathrm{position},\:\mathrm{is}\:\mathrm{maximum}. \\ $$$$\left({c}\right)\:\mathrm{Speed}\:\mathrm{is}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at} \\ $$$$\mathrm{equilibrium}\:\mathrm{position}. \\ $$$$\left({d}\right)\:\mathrm{Magnitude}\:\mathrm{of}\:\mathrm{displacement}\:\mathrm{is} \\ $$$$\mathrm{always}\:\mathrm{maximum}\:\mathrm{whenever}\:\mathrm{speed}\:\mathrm{is} \\ $$$$\mathrm{minimum}. \\ $$

Question Number 20989    Answers: 1   Comments: 1

In the figure shown below, the block of mass 2 kg is at rest. If the spring constant of both the springs A and B is 100 N/m and spring B is cut at t = 0, then magnitude of acceleration of block immediately is

$$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{shown}\:\mathrm{below},\:\mathrm{the}\:\mathrm{block}\:\mathrm{of} \\ $$$$\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{is}\:\mathrm{at}\:\mathrm{rest}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{constant} \\ $$$$\mathrm{of}\:\mathrm{both}\:\mathrm{the}\:\mathrm{springs}\:{A}\:\mathrm{and}\:{B}\:\mathrm{is}\:\mathrm{100}\:\mathrm{N}/\mathrm{m} \\ $$$$\mathrm{and}\:\mathrm{spring}\:{B}\:\mathrm{is}\:\mathrm{cut}\:\mathrm{at}\:{t}\:=\:\mathrm{0},\:\mathrm{then} \\ $$$$\mathrm{magnitude}\:\mathrm{of}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{block} \\ $$$$\mathrm{immediately}\:\mathrm{is} \\ $$

Question Number 20992    Answers: 3   Comments: 1

Question Number 20986    Answers: 1   Comments: 1

A 50 kg log rest on the smooth horizontal surface. A motor deliver a towing force T as shown below. The momentum of the particle at t = 5 s is

$$\mathrm{A}\:\mathrm{50}\:\mathrm{kg}\:\mathrm{log}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{the}\:\mathrm{smooth}\:\mathrm{horizontal} \\ $$$$\mathrm{surface}.\:\mathrm{A}\:\mathrm{motor}\:\mathrm{deliver}\:\mathrm{a}\:\mathrm{towing}\:\mathrm{force} \\ $$$${T}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{below}.\:\mathrm{The}\:\mathrm{momentum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:{t}\:=\:\mathrm{5}\:\mathrm{s}\:\mathrm{is} \\ $$

Question Number 20984    Answers: 1   Comments: 1

A ball of mass m is moving with a velocity u rebounds from a wall with same speed. The collision is assumed to be elastic and the force of interaction between the ball and the wall varies as shown in the figure given below. The value of F_m is

$$\mathrm{A}\:\mathrm{ball}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{velocity}\:{u}\:\mathrm{rebounds}\:\mathrm{from}\:\mathrm{a}\:\mathrm{wall}\:\mathrm{with} \\ $$$$\mathrm{same}\:\mathrm{speed}.\:\mathrm{The}\:\mathrm{collision}\:\mathrm{is}\:\mathrm{assumed} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{elastic}\:\mathrm{and}\:\mathrm{the}\:\mathrm{force}\:\mathrm{of}\:\mathrm{interaction} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{and}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{varies}\:\mathrm{as} \\ $$$$\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{given}\:\mathrm{below}.\:\mathrm{The} \\ $$$$\mathrm{value}\:\mathrm{of}\:{F}_{{m}} \:\mathrm{is} \\ $$

Question Number 20936    Answers: 1   Comments: 1

A graph of x versus t is shown in Figure. Choose correct alternatives from below. (a) The particle was released from rest at t = 0 (b) At B, the acceleration a > 0 (c) At C, the velocity and the acceleration vanish (d) Average velocity for the motion between A and D is positive (e) The speed at D exceeds that at E.

$$\mathrm{A}\:\mathrm{graph}\:\mathrm{of}\:{x}\:\mathrm{versus}\:{t}\:\mathrm{is}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{Figure}. \\ $$$$\mathrm{Choose}\:\mathrm{correct}\:\mathrm{alternatives}\:\mathrm{from}\:\mathrm{below}. \\ $$$$\left({a}\right)\:\mathrm{The}\:\mathrm{particle}\:\mathrm{was}\:\mathrm{released}\:\mathrm{from} \\ $$$$\mathrm{rest}\:\mathrm{at}\:{t}\:=\:\mathrm{0} \\ $$$$\left({b}\right)\:\mathrm{At}\:{B},\:\mathrm{the}\:\mathrm{acceleration}\:{a}\:>\:\mathrm{0} \\ $$$$\left({c}\right)\:\mathrm{At}\:{C},\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{vanish} \\ $$$$\left({d}\right)\:\mathrm{Average}\:\mathrm{velocity}\:\mathrm{for}\:\mathrm{the}\:\mathrm{motion} \\ $$$$\mathrm{between}\:{A}\:\mathrm{and}\:{D}\:\mathrm{is}\:\mathrm{positive} \\ $$$$\left({e}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{at}\:{D}\:\mathrm{exceeds}\:\mathrm{that}\:\mathrm{at}\:{E}. \\ $$

  Pg 130      Pg 131      Pg 132      Pg 133      Pg 134      Pg 135      Pg 136      Pg 137      Pg 138      Pg 139   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com