Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 131

Question Number 23492    Answers: 0   Comments: 5

Question Number 23489    Answers: 1   Comments: 2

A rectangular wire frame ABCD is in vertical plane is moving with a constant acceleration a into the plane. Direction of gravity is shown in figure. A collar can move on wire AC of length l. Coefficient of friction between wire and collar is μ. Find (i) The minimum acceleration a so that collar does not slip on wire. (ii) The time taken by collar to reach C if acceleration is half the value calculated in part (i)

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{wire}\:\mathrm{frame}\:{ABCD}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{vertical}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{acceleration}\:{a}\:\mathrm{into}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Direction} \\ $$$$\mathrm{of}\:\mathrm{gravity}\:\mathrm{is}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}.\:\mathrm{A}\:\mathrm{collar} \\ $$$$\mathrm{can}\:\mathrm{move}\:\mathrm{on}\:\mathrm{wire}\:{AC}\:\mathrm{of}\:\mathrm{length}\:{l}. \\ $$$$\mathrm{Coefficient}\:\mathrm{of}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{wire} \\ $$$$\mathrm{and}\:\mathrm{collar}\:\mathrm{is}\:\mu.\:\mathrm{Find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{acceleration}\:{a}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mathrm{collar}\:\mathrm{does}\:\mathrm{not}\:\mathrm{slip}\:\mathrm{on}\:\mathrm{wire}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{time}\:\mathrm{taken}\:\mathrm{by}\:\mathrm{collar}\:\mathrm{to}\:\mathrm{reach}\:{C} \\ $$$$\mathrm{if}\:\mathrm{acceleration}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{calculated}\:\mathrm{in}\:\mathrm{part}\:\left(\mathrm{i}\right) \\ $$

Question Number 23488    Answers: 0   Comments: 0

area of a(1−cos θ)

$${area}\:{of}\:{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$

Question Number 23481    Answers: 0   Comments: 5

Which of the diagrams represents variation of total mechanical energy of a pendulum oscillating in air as function of time?

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagrams}\:\mathrm{represents} \\ $$$$\mathrm{variation}\:\mathrm{of}\:\mathrm{total}\:\mathrm{mechanical}\:\mathrm{energy}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{pendulum}\:\mathrm{oscillating}\:\mathrm{in}\:\mathrm{air}\:\mathrm{as}\:\mathrm{function} \\ $$$$\mathrm{of}\:\mathrm{time}? \\ $$

Question Number 23476    Answers: 0   Comments: 0

Question Number 23472    Answers: 1   Comments: 1

Question Number 23458    Answers: 0   Comments: 1

Question Number 23444    Answers: 0   Comments: 0

Question Number 23409    Answers: 1   Comments: 0

Hybridisation of N in HNO_3 is

$$\mathrm{Hybridisation}\:\mathrm{of}\:\mathrm{N}\:\mathrm{in}\:\mathrm{HNO}_{\mathrm{3}} \:\mathrm{is} \\ $$

Question Number 23394    Answers: 1   Comments: 0

Which is correct statement? (1) The entropy of the universe increases and tends towards the maximum value (2) All natural processes are irreversible (3) For reversible isolated processes, change of entropy is zero (4) For irreversible expansion of isolated processes, entropy change < 0

$$\mathrm{Which}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{statement}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{entropy}\:\mathrm{of}\:\mathrm{the}\:\mathrm{universe}\:\mathrm{increases} \\ $$$$\mathrm{and}\:\mathrm{tends}\:\mathrm{towards}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{All}\:\mathrm{natural}\:\mathrm{processes}\:\mathrm{are}\:\mathrm{irreversible} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{For}\:\mathrm{reversible}\:\mathrm{isolated}\:\mathrm{processes}, \\ $$$$\mathrm{change}\:\mathrm{of}\:\mathrm{entropy}\:\mathrm{is}\:\mathrm{zero} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{For}\:\mathrm{irreversible}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\mathrm{isolated}\:\mathrm{processes},\:\mathrm{entropy}\:\mathrm{change}\:<\:\mathrm{0} \\ $$

Question Number 23390    Answers: 1   Comments: 2

Question Number 23399    Answers: 1   Comments: 4

Two blocks of masses 2 kg and 3 kg are kept on a smooth inclined plane. A constant force of magnitude 20 N is applied on 2 kg block parallel to the inclined. The contact force between the two blocks is

$$\mathrm{Two}\:\mathrm{blocks}\:\mathrm{of}\:\mathrm{masses}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{3}\:\mathrm{kg} \\ $$$$\mathrm{are}\:\mathrm{kept}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{inclined}\:\mathrm{plane}. \\ $$$$\mathrm{A}\:\mathrm{constant}\:\mathrm{force}\:\mathrm{of}\:\mathrm{magnitude}\:\mathrm{20}\:\mathrm{N}\:\mathrm{is} \\ $$$$\mathrm{applied}\:\mathrm{on}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{block}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{inclined}.\:\mathrm{The}\:\mathrm{contact}\:\mathrm{force}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{blocks}\:\mathrm{is} \\ $$

Question Number 23381    Answers: 1   Comments: 0

A women swimming upstream is not moving with respect to the ground. Is she doing any work, if she stops swimming and merely floats is work done on her?

$$\mathrm{A}\:\mathrm{women}\:\mathrm{swimming}\:\mathrm{upstream}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{moving}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Is} \\ $$$$\mathrm{she}\:\mathrm{doing}\:\mathrm{any}\:\mathrm{work},\:\mathrm{if}\:\mathrm{she}\:\mathrm{stops} \\ $$$$\mathrm{swimming}\:\mathrm{and}\:\mathrm{merely}\:\mathrm{floats}\:\mathrm{is}\:\mathrm{work} \\ $$$$\mathrm{done}\:\mathrm{on}\:\mathrm{her}? \\ $$

Question Number 23369    Answers: 1   Comments: 0

Which of the following pair would correct inequality for standard molar entropy? (1) NO(g) < NO_2 (g) (2) C_2 H_2 (g) > C_2 H_6 (g) (3) CH_3 COOH (l) < HCOOH (l) (4) CO_2 (g) < CO(g)

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{pair}\:\mathrm{would} \\ $$$$\mathrm{correct}\:\mathrm{inequality}\:\mathrm{for}\:\mathrm{standard}\:\mathrm{molar} \\ $$$$\mathrm{entropy}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{NO}\left(\mathrm{g}\right)\:<\:\mathrm{NO}_{\mathrm{2}} \left(\mathrm{g}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{C}_{\mathrm{2}} \mathrm{H}_{\mathrm{2}} \left(\mathrm{g}\right)\:>\:\mathrm{C}_{\mathrm{2}} \mathrm{H}_{\mathrm{6}} \left(\mathrm{g}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{CH}_{\mathrm{3}} \mathrm{COOH}\:\left(\mathrm{l}\right)\:<\:\mathrm{HCOOH}\:\left(\mathrm{l}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{CO}_{\mathrm{2}} \left(\mathrm{g}\right)\:<\:\mathrm{CO}\left(\mathrm{g}\right) \\ $$

Question Number 23368    Answers: 0   Comments: 0

Assertion: The first ionization energy of Be is greater than that of B. Reason: 2p-orbital is lower in energy than 2s-orbital.

$$\boldsymbol{\mathrm{Assertion}}:\:\mathrm{The}\:\mathrm{first}\:\mathrm{ionization}\:\mathrm{energy} \\ $$$$\mathrm{of}\:\mathrm{Be}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{B}. \\ $$$$\boldsymbol{\mathrm{Reason}}:\:\mathrm{2}{p}-\mathrm{orbital}\:\mathrm{is}\:\mathrm{lower}\:\mathrm{in}\:\mathrm{energy} \\ $$$$\mathrm{than}\:\mathrm{2}{s}-\mathrm{orbital}. \\ $$

Question Number 23361    Answers: 1   Comments: 0

A 50 g lead bullet, sp. heat 0.02 is initially at 30°C. It is fired vertically upwards with a speed of 840 m/s and on returning to the starting level strikes a cake of ice at 0°C. How much ice is melted? Assume that all energy is spent in melting only (L = 80 cal/g).

$$\mathrm{A}\:\mathrm{50}\:\mathrm{g}\:\mathrm{lead}\:\mathrm{bullet},\:\mathrm{sp}.\:\mathrm{heat}\:\mathrm{0}.\mathrm{02}\:\mathrm{is} \\ $$$$\mathrm{initially}\:\mathrm{at}\:\mathrm{30}°\mathrm{C}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{fired}\:\mathrm{vertically} \\ $$$$\mathrm{upwards}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{840}\:\mathrm{m}/\mathrm{s}\:\mathrm{and} \\ $$$$\mathrm{on}\:\mathrm{returning}\:\mathrm{to}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{level}\:\mathrm{strikes} \\ $$$$\mathrm{a}\:\mathrm{cake}\:\mathrm{of}\:\mathrm{ice}\:\mathrm{at}\:\mathrm{0}°\mathrm{C}.\:\mathrm{How}\:\mathrm{much}\:\mathrm{ice}\:\mathrm{is} \\ $$$$\mathrm{melted}?\:\mathrm{Assume}\:\mathrm{that}\:\mathrm{all}\:\mathrm{energy}\:\mathrm{is} \\ $$$$\mathrm{spent}\:\mathrm{in}\:\mathrm{melting}\:\mathrm{only}\:\left({L}\:=\:\mathrm{80}\:\mathrm{cal}/\mathrm{g}\right). \\ $$

Question Number 23294    Answers: 1   Comments: 2

Question Number 23288    Answers: 1   Comments: 3

A uniform chain of mass M and length L is hanging from the table. The chain is in limiting equilibrium when l length of chain over hangs. It is slightly disturbed from this position. Find the speed of the chain just after it completely comes off the table.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{chain}\:\mathrm{of}\:\mathrm{mass}\:{M}\:\mathrm{and}\:\mathrm{length} \\ $$$${L}\:\mathrm{is}\:\mathrm{hanging}\:\mathrm{from}\:\mathrm{the}\:\mathrm{table}.\:\mathrm{The}\:\mathrm{chain} \\ $$$$\mathrm{is}\:\mathrm{in}\:\mathrm{limiting}\:\mathrm{equilibrium}\:\mathrm{when}\:{l}\:\mathrm{length} \\ $$$$\mathrm{of}\:\mathrm{chain}\:\mathrm{over}\:\mathrm{hangs}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{slightly} \\ $$$$\mathrm{disturbed}\:\mathrm{from}\:\mathrm{this}\:\mathrm{position}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chain}\:\mathrm{just}\:\mathrm{after}\:\mathrm{it}\:\mathrm{completely} \\ $$$$\mathrm{comes}\:\mathrm{off}\:\mathrm{the}\:\mathrm{table}. \\ $$

Question Number 23274    Answers: 0   Comments: 2

Assertion: Both N_2 and NO^+ are diamagnetic substances. Reason: NO^+ is isoelectronic with N_2 .

$$\boldsymbol{\mathrm{Assertion}}:\:\mathrm{Both}\:\mathrm{N}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{NO}^{+} \:\mathrm{are} \\ $$$$\mathrm{diamagnetic}\:\mathrm{substances}. \\ $$$$\boldsymbol{\mathrm{Reason}}:\:\mathrm{NO}^{+} \:\mathrm{is}\:\mathrm{isoelectronic}\:\mathrm{with}\:\mathrm{N}_{\mathrm{2}} . \\ $$

Question Number 23272    Answers: 1   Comments: 1

Question Number 23270    Answers: 1   Comments: 0

The reaction CH_4 (g) + Cl_2 (g) → CH_3 Cl(g) + HCl(g) has ΔH = −25 kcal and bond dissociation energy of C − Cl, H − Cl, C − H and Cl − Cl is given as 84 kcal/mol, 103 kcal/mol, x kcal/mol and y kcal/mol respectively. Given x : y = 9 : 5, then bond energy of Cl − Cl bond in kcal/mol is

$$\mathrm{The}\:\mathrm{reaction}\:\mathrm{CH}_{\mathrm{4}} \left(\mathrm{g}\right)\:+\:\mathrm{Cl}_{\mathrm{2}} \left(\mathrm{g}\right)\:\rightarrow\:\mathrm{CH}_{\mathrm{3}} \mathrm{Cl}\left(\mathrm{g}\right) \\ $$$$+\:\mathrm{HCl}\left(\mathrm{g}\right)\:\mathrm{has}\:\Delta\mathrm{H}\:=\:−\mathrm{25}\:\mathrm{kcal}\:\mathrm{and}\:\mathrm{bond} \\ $$$$\mathrm{dissociation}\:\mathrm{energy}\:\mathrm{of}\:\mathrm{C}\:−\:\mathrm{Cl},\:\mathrm{H}\:−\:\mathrm{Cl}, \\ $$$$\mathrm{C}\:−\:\mathrm{H}\:\mathrm{and}\:\mathrm{Cl}\:−\:\mathrm{Cl}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}\:\mathrm{84}\:\mathrm{kcal}/\mathrm{mol}, \\ $$$$\mathrm{103}\:\mathrm{kcal}/\mathrm{mol},\:\mathrm{x}\:\mathrm{kcal}/\mathrm{mol}\:\mathrm{and}\:\mathrm{y}\:\mathrm{kcal}/\mathrm{mol} \\ $$$$\mathrm{respectively}.\:\mathrm{Given}\:\mathrm{x}\::\:\mathrm{y}\:=\:\mathrm{9}\::\:\mathrm{5},\:\mathrm{then} \\ $$$$\mathrm{bond}\:\mathrm{energy}\:\mathrm{of}\:\mathrm{Cl}\:−\:\mathrm{Cl}\:\mathrm{bond}\:\mathrm{in}\:\mathrm{kcal}/\mathrm{mol} \\ $$$$\mathrm{is} \\ $$

Question Number 23237    Answers: 0   Comments: 6

Question Number 23224    Answers: 0   Comments: 4

Consider the system shown in the figure. Initially the system was in rest. (i) Find the acceleration of block if man climbs the rod with acceleration a (w.r.t. rod) (ii) If the man climb to the top of the rod then find the distance moved by the block.

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}.\:\mathrm{Initially}\:\mathrm{the}\:\mathrm{system}\:\mathrm{was}\:\mathrm{in}\:\mathrm{rest}. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{block}\:\mathrm{if}\:\mathrm{man} \\ $$$$\mathrm{climbs}\:\mathrm{the}\:\mathrm{rod}\:\mathrm{with}\:\mathrm{acceleration}\:{a}\:\left(\mathrm{w}.\mathrm{r}.\mathrm{t}.\right. \\ $$$$\left.\mathrm{rod}\right) \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{man}\:\mathrm{climb}\:\mathrm{to}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{rod}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{moved}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{block}. \\ $$

Question Number 23205    Answers: 0   Comments: 0

thank u.....

$${thank}\:{u}..... \\ $$

Question Number 23187    Answers: 0   Comments: 0

plz anyone answer the question 23181...plz plz plz...

$${plz}\:\:\:{anyone}\:{answer}\:{the}\:{question}\: \\ $$$$\mathrm{23181}...{plz}\:{plz}\:{plz}... \\ $$

Question Number 23181    Answers: 0   Comments: 2

show that the curve with parametric equcations x=t^2 −3t+5, y=t^3 +t^2 −10t+9 intersect at the point (3,1).

$${show}\:{that}\:{the}\:{curve}\:{with}\:{parametric}\: \\ $$$${equcations}\:\:{x}={t}^{\mathrm{2}} \:−\mathrm{3}{t}+\mathrm{5}, \\ $$$${y}={t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:−\mathrm{10}{t}+\mathrm{9}\:{intersect}\:{at}\:{the}\: \\ $$$${point}\:\left(\mathrm{3},\mathrm{1}\right). \\ $$

  Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132      Pg 133      Pg 134      Pg 135   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com