Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 124

Question Number 25780    Answers: 1   Comments: 0

every periodic function is differentiable.true or false justify

$${every}\:{periodic}\:{function}\:{is}\: \\ $$$${differentiable}.{true}\:{or}\:{false}\:{justify} \\ $$

Question Number 25275    Answers: 0   Comments: 0

Question Number 25103    Answers: 1   Comments: 0

Question Number 25091    Answers: 1   Comments: 0

A particle of mass m moving with speed u collides perfectly inelastically with a sphere of radius R and same mass, at rest, at an impact parameter d. Find (a) Angle between their final velocities (b) Magnitude of their final velocities

$${A}\:{particle}\:{of}\:{mass}\:{m}\:{moving}\:{with} \\ $$$${speed}\:{u}\:{collides}\:{perfectly}\:{inelastically} \\ $$$${with}\:{a}\:{sphere}\:{of}\:{radius}\:{R}\:{and}\:{same} \\ $$$${mass},\:{at}\:{rest},\:{at}\:{an}\:{impact}\:{parameter} \\ $$$${d}.\:{Find} \\ $$$$\left({a}\right)\:{Angle}\:{between}\:{their}\:{final}\:{velocities} \\ $$$$\left({b}\right)\:{Magnitude}\:{of}\:{their}\:{final} \\ $$$${velocities} \\ $$

Question Number 25086    Answers: 0   Comments: 4

Question Number 25058    Answers: 1   Comments: 0

Two objects slide over a frictionless horizontal surface. The first object, mass m_1 = 5 kg, is propelled with a speed u = 4.5 m/s towards the second object, mass m_2 = 5 kg, which is initially at rest. After the collision, both objects have velocities which are directed at θ = 60° on either side of the original line of motion of the first object. What can you say about the elasticity of collision?

$${Two}\:{objects}\:{slide}\:{over}\:{a}\:{frictionless} \\ $$$${horizontal}\:{surface}.\:{The}\:{first}\:{object}, \\ $$$${mass}\:{m}_{\mathrm{1}} \:=\:\mathrm{5}\:{kg},\:{is}\:{propelled}\:{with}\:{a} \\ $$$${speed}\:{u}\:=\:\mathrm{4}.\mathrm{5}\:{m}/{s}\:{towards}\:{the}\:{second} \\ $$$${object},\:{mass}\:{m}_{\mathrm{2}} \:=\:\mathrm{5}\:{kg},\:{which}\:{is} \\ $$$${initially}\:{at}\:{rest}.\:{After}\:{the}\:{collision}, \\ $$$${both}\:{objects}\:{have}\:{velocities}\:{which}\:{are} \\ $$$${directed}\:{at}\:\theta\:=\:\mathrm{60}°\:{on}\:{either}\:{side}\:{of} \\ $$$${the}\:{original}\:{line}\:{of}\:{motion}\:{of}\:{the} \\ $$$${first}\:{object}.\:{What}\:{can}\:{you}\:{say}\:{about} \\ $$$${the}\:{elasticity}\:{of}\:{collision}? \\ $$

Question Number 25038    Answers: 1   Comments: 0

For a particle of a rotating rigid body, v = rω. So (1) ω ∝ (1/r) (2) ω ∝ v (3) v ∝ r (4) ω is independent of r

$$\mathrm{For}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{rotating}\:\mathrm{rigid}\:\mathrm{body}, \\ $$$${v}\:=\:{r}\omega.\:\mathrm{So} \\ $$$$\left(\mathrm{1}\right)\:\omega\:\propto\:\left(\mathrm{1}/{r}\right) \\ $$$$\left(\mathrm{2}\right)\:\omega\:\propto\:{v} \\ $$$$\left(\mathrm{3}\right)\:{v}\:\propto\:{r} \\ $$$$\left(\mathrm{4}\right)\:\omega\:\mathrm{is}\:\mathrm{independent}\:\mathrm{of}\:{r} \\ $$

Question Number 25013    Answers: 0   Comments: 3

With reference to figure of a cube of edge a and mass m, state whether the following are true or false. (O is the centre of the cube.) (1) The moment of inertia of cube about z-axis is, I_z = I_x + I_y (2) The moment of inertia of cube about z′ is, I_(z′) = I_z + ((ma^2 )/2) (3) The moment of inertia of cube about z′′ is, I_(z′) = I_z + ((ma^2 )/2) (4) I_x = I_y

$$\mathrm{With}\:\mathrm{reference}\:\mathrm{to}\:\mathrm{figure}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{of} \\ $$$$\mathrm{edge}\:{a}\:\mathrm{and}\:\mathrm{mass}\:{m},\:\mathrm{state}\:\mathrm{whether}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{are}\:\mathrm{true}\:\mathrm{or}\:\mathrm{false}.\:\left(\mathrm{O}\:\mathrm{is}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}.\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}-\mathrm{axis}\:\mathrm{is},\:{I}_{{z}} \:=\:{I}_{{x}} \:+\:{I}_{{y}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}'\:\mathrm{is},\:{I}_{{z}'} \:=\:{I}_{{z}} \:+\:\frac{{ma}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}''\:\mathrm{is},\:{I}_{{z}'} \:=\:{I}_{{z}} \:+\:\frac{{ma}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:{I}_{{x}} \:=\:{I}_{{y}} \\ $$

Question Number 25000    Answers: 1   Comments: 0

find x,y from the equation: (1/2)x−yi+(1/(1+i))=((√(1+ω^8 ))+(√(1+ω^(10) )))^4

$${find}\:{x},{y}\:{from}\:{the}\:{equation}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{x}−{yi}+\frac{\mathrm{1}}{\mathrm{1}+{i}}=\left(\sqrt{\mathrm{1}+\omega^{\mathrm{8}} }+\sqrt{\mathrm{1}+\omega^{\mathrm{10}} }\right)^{\mathrm{4}} \\ $$$$ \\ $$

Question Number 24997    Answers: 0   Comments: 0

Question Number 24985    Answers: 0   Comments: 0

Question Number 24961    Answers: 0   Comments: 0

Question Number 24945    Answers: 0   Comments: 4

A particle of mass m moving with a speed v hits elastically another stationary particle of mass 2m on a smooth horizontal circular tube of radius r. The time in which the next collision will take place is equal to

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{speed}\:{v}\:\mathrm{hits}\:\mathrm{elastically}\:\mathrm{another} \\ $$$$\mathrm{stationary}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}{m}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{smooth}\:\mathrm{horizontal}\:\mathrm{circular}\:\mathrm{tube}\:\mathrm{of} \\ $$$$\mathrm{radius}\:{r}.\:\mathrm{The}\:\mathrm{time}\:\mathrm{in}\:\mathrm{which}\:\mathrm{the}\:\mathrm{next} \\ $$$$\mathrm{collision}\:\mathrm{will}\:\mathrm{take}\:\mathrm{place}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 24934    Answers: 0   Comments: 3

A uniform circular disc of mass 1.5 kg and radius 0.5 m is initially at rest on a horizontal frictionless surface. Three forces of equal magnitude F = 0.5 N are applied simultaneously along the three sides of an equilateral triangle xyz with its vertices on the perimeter of the disc. One second after applying the forces, the angular speed of the disc in rad/s is :

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{circular}\:\mathrm{disc}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{1}.\mathrm{5}\:\mathrm{kg} \\ $$$$\mathrm{and}\:\mathrm{radius}\:\mathrm{0}.\mathrm{5}\:\mathrm{m}\:\mathrm{is}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{frictionless}\:\mathrm{surface}.\:\mathrm{Three} \\ $$$$\mathrm{forces}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitude}\:{F}\:=\:\mathrm{0}.\mathrm{5}\:\mathrm{N} \\ $$$$\mathrm{are}\:\mathrm{applied}\:\mathrm{simultaneously}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\ $$$${xyz}\:\mathrm{with}\:\mathrm{its}\:\mathrm{vertices}\:\mathrm{on}\:\mathrm{the}\:\mathrm{perimeter} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{disc}.\:\mathrm{One}\:\mathrm{second}\:\mathrm{after}\:\mathrm{applying} \\ $$$$\mathrm{the}\:\mathrm{forces},\:\mathrm{the}\:\mathrm{angular}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{disc} \\ $$$$\mathrm{in}\:\mathrm{rad}/\mathrm{s}\:\mathrm{is}\:: \\ $$

Question Number 24909    Answers: 0   Comments: 0

Question Number 24893    Answers: 0   Comments: 2

About a collision which of the following are not correct a. Physical touch is a must b. Particles cannot change c. Effect of external force is not considered d. Momentum may or may not change multi−correct question

$$\mathrm{About}\:\mathrm{a}\:\mathrm{collision}\:\mathrm{which}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{are}\:\mathrm{not}\:\mathrm{correct} \\ $$$$\mathrm{a}.\:\mathrm{Physical}\:\mathrm{touch}\:\mathrm{is}\:\mathrm{a}\:\mathrm{must} \\ $$$$\mathrm{b}.\:\mathrm{Particles}\:\mathrm{cannot}\:\mathrm{change} \\ $$$$\mathrm{c}.\:\mathrm{Effect}\:\mathrm{of}\:\mathrm{external}\:\mathrm{force}\:\mathrm{is}\:\mathrm{not}\:\mathrm{considered} \\ $$$$\mathrm{d}.\:\mathrm{Momentum}\:\mathrm{may}\:\mathrm{or}\:\mathrm{may}\:\mathrm{not}\:\mathrm{change} \\ $$$$\mathrm{multi}−\mathrm{correct}\:\mathrm{question} \\ $$

Question Number 24879    Answers: 0   Comments: 4

A particle of mass m is fixed to one end of a light rigid rod of length l and rotated in a vertical circular path about its other end. The minimum speed of the particle at its highest point must be

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{fixed}\:\mathrm{to}\:\mathrm{one}\:\mathrm{end} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{light}\:\mathrm{rigid}\:\mathrm{rod}\:\mathrm{of}\:\mathrm{length}\:{l}\:\mathrm{and}\:\mathrm{rotated} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{vertical}\:\mathrm{circular}\:\mathrm{path}\:\mathrm{about}\:\mathrm{its} \\ $$$$\mathrm{other}\:\mathrm{end}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{at}\:\mathrm{its}\:\mathrm{highest}\:\mathrm{point}\:\mathrm{must}\:\mathrm{be} \\ $$

Question Number 24877    Answers: 0   Comments: 7

Question Number 24858    Answers: 2   Comments: 0

If three positive numbers a, b, c are in A.P. and (1/a^2 ), (1/b^2 ), (1/c^2 ) also in A.P., then (1) a = b = c (2) 2b = 3a + c (3) b^2 = ((ac)/8) (4) 2c = 2b + a

$$\mathrm{If}\:\mathrm{three}\:\mathrm{positive}\:\mathrm{numbers}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{A}.\mathrm{P}.\:\mathrm{and}\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} },\:\frac{\mathrm{1}}{{b}^{\mathrm{2}} },\:\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\:\mathrm{also}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}.,\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{a}\:=\:{b}\:=\:{c} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}{b}\:=\:\mathrm{3}{a}\:+\:{c} \\ $$$$\left(\mathrm{3}\right)\:{b}^{\mathrm{2}} \:=\:\frac{{ac}}{\mathrm{8}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}{c}\:=\:\mathrm{2}{b}\:+\:{a} \\ $$

Question Number 24873    Answers: 0   Comments: 6

A rigid body is made of three identical thin rods, each of length L, fastened together in the form of letter H. The body is free to rotate about a horizontal axis that runs along the length of one of legs of H. The body is allowed to fall from rest from a position in which plane of H is horizontal. The angular speed of body when plane of H is vertical is

$$\mathrm{A}\:\mathrm{rigid}\:\mathrm{body}\:\mathrm{is}\:\mathrm{made}\:\mathrm{of}\:\mathrm{three}\:\mathrm{identical} \\ $$$$\mathrm{thin}\:\mathrm{rods},\:\mathrm{each}\:\mathrm{of}\:\mathrm{length}\:{L},\:\mathrm{fastened} \\ $$$$\mathrm{together}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\mathrm{letter}\:{H}.\:\mathrm{The} \\ $$$$\mathrm{body}\:\mathrm{is}\:\mathrm{free}\:\mathrm{to}\:\mathrm{rotate}\:\mathrm{about}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{axis}\:\mathrm{that}\:\mathrm{runs}\:\mathrm{along}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{legs}\:\mathrm{of}\:{H}.\:\mathrm{The}\:\mathrm{body}\:\mathrm{is}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{fall} \\ $$$$\mathrm{from}\:\mathrm{rest}\:\mathrm{from}\:\mathrm{a}\:\mathrm{position}\:\mathrm{in}\:\mathrm{which}\:\mathrm{plane} \\ $$$$\mathrm{of}\:{H}\:\mathrm{is}\:\mathrm{horizontal}.\:\mathrm{The}\:\mathrm{angular}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{body}\:\mathrm{when}\:\mathrm{plane}\:\mathrm{of}\:{H}\:\mathrm{is}\:\mathrm{vertical}\:\mathrm{is} \\ $$

Question Number 24814    Answers: 0   Comments: 3

Question Number 24786    Answers: 1   Comments: 1

A particle of mass m is moving in yz-plane with a uniform velocity v with its trajectory running parallel to +ve y- axis and intersecting z-axis at z = a. The change in its angular momentum about the origin as it bounces elastically from a wall at y = constant is : (1) mvae_x ^∧ (2) 2mvae_x ^∧ (3) ymve_x ^∧ (4) 2ymve_x ^∧

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{in}\:{yz}-\mathrm{plane} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{uniform}\:\mathrm{velocity}\:{v}\:\mathrm{with}\:\mathrm{its} \\ $$$$\mathrm{trajectory}\:\mathrm{running}\:\mathrm{parallel}\:\mathrm{to}\:+\mathrm{ve}\:{y}- \\ $$$$\mathrm{axis}\:\mathrm{and}\:\mathrm{intersecting}\:{z}-\mathrm{axis}\:\mathrm{at}\:{z}\:=\:{a}. \\ $$$$\mathrm{The}\:\mathrm{change}\:\mathrm{in}\:\mathrm{its}\:\mathrm{angular}\:\mathrm{momentum} \\ $$$$\mathrm{about}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{as}\:\mathrm{it}\:\mathrm{bounces}\:\mathrm{elastically} \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{wall}\:\mathrm{at}\:{y}\:=\:\mathrm{constant}\:\mathrm{is}\:: \\ $$$$\left(\mathrm{1}\right)\:{mva}\overset{\wedge} {{e}}_{{x}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}{mva}\overset{\wedge} {{e}}_{{x}} \\ $$$$\left(\mathrm{3}\right)\:{ymv}\overset{\wedge} {{e}}_{{x}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}{ymv}\overset{\wedge} {{e}}_{{x}} \\ $$

Question Number 24772    Answers: 0   Comments: 13

The ratio of acceleration of points A, B and C is [assume all surfaces are smooth, pulley and strings are light]

$$\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{points}\:{A}, \\ $$$${B}\:\mathrm{and}\:{C}\:\mathrm{is}\:\left[\mathrm{assume}\:\mathrm{all}\:\mathrm{surfaces}\:\mathrm{are}\right. \\ $$$$\left.\mathrm{smooth},\:\mathrm{pulley}\:\mathrm{and}\:\mathrm{strings}\:\mathrm{are}\:\mathrm{light}\right] \\ $$

Question Number 24739    Answers: 0   Comments: 12

A particle is suspended vertically from point O by ideal string of length L. It is given horizontal velocity ′v′. There is vertical line AB at a distance (L/8) from P. At some point, it leaves circular motion and follows projectile motion. At the instant it crosses AB, its velocity is horizontal. Find u

$${A}\:{particle}\:{is}\:{suspended}\:{vertically} \\ $$$${from}\:{point}\:{O}\:{by}\:{ideal}\:{string}\:{of}\:{length} \\ $$$${L}.\:{It}\:{is}\:{given}\:{horizontal}\:{velocity}\:'{v}'. \\ $$$${There}\:{is}\:{vertical}\:{line}\:{AB}\:{at}\:{a}\:{distance} \\ $$$$\frac{{L}}{\mathrm{8}}\:{from}\:{P}.\:{At}\:{some}\:{point},\:{it}\:{leaves} \\ $$$${circular}\:{motion}\:{and}\:{follows}\:{projectile} \\ $$$${motion}.\:{At}\:{the}\:{instant}\:{it}\:{crosses}\:{AB}, \\ $$$${its}\:{velocity}\:{is}\:{horizontal}.\:{Find}\:{u} \\ $$

Question Number 24730    Answers: 0   Comments: 13

Consider a uniform square plate of side a and mass m. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corners is

$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{uniform}\:\mathrm{square}\:\mathrm{plate}\:\mathrm{of}\:\mathrm{side} \\ $$$${a}\:\mathrm{and}\:\mathrm{mass}\:{m}.\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{plate}\:\mathrm{about}\:\mathrm{an}\:\mathrm{axis}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{its}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{its}\:\mathrm{corners}\:\mathrm{is} \\ $$

Question Number 24716    Answers: 1   Comments: 0

A 2.2 kg block starts from rest on a rough inclined plane that makes an angle of 25° with the horizontal. The coefficient of kinetic friction is 0.25. As the block goes 2 m down the plane, the mechanical energy of the Earth-block system changes by

$$\mathrm{A}\:\mathrm{2}.\mathrm{2}\:\mathrm{kg}\:\mathrm{block}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{rough}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{that}\:\mathrm{makes}\:\mathrm{an} \\ $$$$\mathrm{angle}\:\mathrm{of}\:\mathrm{25}°\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{The} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{is}\:\mathrm{0}.\mathrm{25}.\:\mathrm{As} \\ $$$$\mathrm{the}\:\mathrm{block}\:\mathrm{goes}\:\mathrm{2}\:\mathrm{m}\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane},\:\mathrm{the} \\ $$$$\mathrm{mechanical}\:\mathrm{energy}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Earth}-\mathrm{block} \\ $$$$\mathrm{system}\:\mathrm{changes}\:\mathrm{by} \\ $$

  Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com