Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 121

Question Number 29522    Answers: 1   Comments: 7

Question Number 29425    Answers: 1   Comments: 1

Question Number 29364    Answers: 0   Comments: 0

Question Number 29313    Answers: 0   Comments: 0

Question Number 29287    Answers: 0   Comments: 0

plz is there any app for medical forum just like this one

$${plz}\:{is}\:{there}\:{any}\:{app}\:{for}\:{medical} \\ $$$${forum}\:{just}\:{like}\:{this}\:{one} \\ $$

Question Number 29268    Answers: 0   Comments: 2

A man moves 20m North , then 12m East and finally 15m South.His displacement from the starting point is now (a) 13m (b) 27m (c) 47m (d) 23m

$$\mathrm{A}\:\mathrm{man}\:\mathrm{moves}\:\:\mathrm{20m}\:\:\mathrm{North}\:,\:\:\mathrm{then}\:\:\mathrm{12m}\:\mathrm{East}\:\:\mathrm{and}\:\:\mathrm{finally}\:\:\mathrm{15m}\:\:\mathrm{South}.\mathrm{His} \\ $$$$\mathrm{displacement}\:\mathrm{from}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{point}\:\mathrm{is}\:\mathrm{now} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{13m}\:\:\left(\mathrm{b}\right)\:\:\mathrm{27m}\:\:\left(\mathrm{c}\right)\:\:\mathrm{47m}\:\:\left(\mathrm{d}\right)\:\:\mathrm{23m} \\ $$

Question Number 29272    Answers: 0   Comments: 0

(2x−3x^3 )y^((2)) +4y^((1)) +6xy=0 this equation has an answer in the form of several sentences. get the public answer.

$$\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{3}} \right){y}^{\left(\mathrm{2}\right)} +\mathrm{4}{y}^{\left(\mathrm{1}\right)} +\mathrm{6}{xy}=\mathrm{0} \\ $$$${this}\:{equation}\:{has}\:{an}\:{answer}\:{in}\:{the}\:{form}\:{of}\:{several}\:{sentences}. \\ $$$${get}\:{the}\:{public}\:{answer}. \\ $$

Question Number 29265    Answers: 0   Comments: 0

An electric pump with efficiency of 70% raises water to a height of 15m . If water is delivered at the rate of 350 dm^3 per minute. (i) what is the power rating of the pump ? (mass of 1 dm^3 = 1 kg) (ii) what is the energy lost by the pump ? (g = 10 m/s^2 ) (Answer: 1250W. 22.5 KJ)

$$\mathrm{An}\:\mathrm{electric}\:\mathrm{pump}\:\mathrm{with}\:\mathrm{efficiency}\:\mathrm{of}\:\:\:\mathrm{70\%}\:\:\mathrm{raises}\:\mathrm{water}\:\mathrm{to}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\:\mathrm{15m} \\ $$$$.\:\mathrm{If}\:\mathrm{water}\:\mathrm{is}\:\mathrm{delivered}\:\mathrm{at}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\:\mathrm{350}\:\mathrm{dm}^{\mathrm{3}} \:\mathrm{per}\:\mathrm{minute}.\:\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{power}\:\mathrm{rating}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pump}\:?\:\:\:\left(\mathrm{mass}\:\mathrm{of}\:\mathrm{1}\:\mathrm{dm}^{\mathrm{3}} \:=\:\mathrm{1}\:\mathrm{kg}\right) \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{energy}\:\mathrm{lost}\:\mathrm{by}\:\mathrm{the}\:\mathrm{pump}\:?\:\:\:\left(\mathrm{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$$$\left(\mathrm{Answer}:\:\:\:\mathrm{1250W}.\:\:\:\:\mathrm{22}.\mathrm{5}\:\mathrm{KJ}\right) \\ $$

Question Number 29222    Answers: 1   Comments: 0

3x−4y=12, xy=2

$$\mathrm{3}{x}−\mathrm{4}{y}=\mathrm{12},\:{xy}=\mathrm{2} \\ $$

Question Number 29209    Answers: 1   Comments: 4

Question Number 29172    Answers: 1   Comments: 0

Question Number 29170    Answers: 0   Comments: 0

Question Number 29168    Answers: 0   Comments: 1

Question Number 29144    Answers: 1   Comments: 0

A body moves in a circular orbit of radius 4R round the earth. Express the acceleration of the free fall due to gravity of the body in terms of g R = radius if the earth g = acceleration due to gravity

$$\mathrm{A}\:\mathrm{body}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circular}\:\mathrm{orbit}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{4R}\:\mathrm{round}\:\mathrm{the}\:\mathrm{earth}.\:\:\mathrm{Express}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{free}\:\mathrm{fall}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{g} \\ $$$$\mathrm{R}\:=\:\mathrm{radius}\:\mathrm{if}\:\mathrm{the}\:\mathrm{earth} \\ $$$$\mathrm{g}\:=\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity} \\ $$

Question Number 29063    Answers: 0   Comments: 0

Question Number 29048    Answers: 1   Comments: 19

Question Number 28991    Answers: 1   Comments: 1

prove that L(1)(s)= (1/s) and L(t^n )(s)= ((n!)/s^(n+1) ) .L means laplace transform.

$${prove}\:{that}\:{L}\left(\mathrm{1}\right)\left({s}\right)=\:\frac{\mathrm{1}}{{s}}\:\:{and}\:{L}\left({t}^{{n}} \right)\left({s}\right)=\:\frac{{n}!}{{s}^{{n}+\mathrm{1}} }\:.{L}\:{means} \\ $$$${laplace}\:{transform}. \\ $$

Question Number 28987    Answers: 0   Comments: 0

find ∫_0 ^(2π) (dt/((a+bcost)^2 )).with a>b>0 .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{\left({a}+{bcost}\right)^{\mathrm{2}} }.{with}\:\:{a}>{b}>\mathrm{0}\:. \\ $$

Question Number 28930    Answers: 0   Comments: 1

Question Number 28905    Answers: 1   Comments: 0

A body rolls down a slope from a height of 100m. the velocity at the foot of the slope is 20 m/s. What percentage of the P.E is converted in K.E ? Answer: 20%

$$\mathrm{A}\:\mathrm{body}\:\mathrm{rolls}\:\mathrm{down}\:\mathrm{a}\:\mathrm{slope}\:\mathrm{from}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\:\mathrm{100m}.\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{slope}\:\mathrm{is}\:\:\mathrm{20}\:\mathrm{m}/\mathrm{s}.\:\:\mathrm{What}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{the}\:\boldsymbol{\mathrm{P}}.\boldsymbol{\mathrm{E}}\:\:\mathrm{is}\:\mathrm{converted}\:\mathrm{in}\:\:\boldsymbol{\mathrm{K}}.\boldsymbol{\mathrm{E}}\:\:? \\ $$$$ \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{nswer}:\:\:\:\:\:\mathrm{20\%} \\ $$

Question Number 28854    Answers: 0   Comments: 0

The arms of an ac maxwell bridge are arranged as follows: AB is a non - active resistance of 1000 Ω in parallel with a capacitor of capacitance of 0.5μF , BC is a non - inductive resistance of 600 Ω, CD is inductive impedance (unknown) and DA is a non - inductive resustance of 400 Ω. If balance is obtained under these conditions. Find the value of the resistance and the inductance of the branch CD and show the circuit diagram.

$$\mathrm{The}\:\mathrm{arms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{ac}\:\mathrm{maxwell}\:\mathrm{bridge}\:\mathrm{are}\:\mathrm{arranged}\:\mathrm{as}\:\mathrm{follows}:\:\:\mathrm{AB}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{active} \\ $$$$\mathrm{resistance}\:\mathrm{of}\:\:\:\mathrm{1000}\:\Omega\:\:\mathrm{in}\:\mathrm{parallel}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capacitor}\:\mathrm{of}\:\mathrm{capacitance}\:\mathrm{of}\:\:\:\mathrm{0}.\mathrm{5}\mu\mathrm{F}\:, \\ $$$$\mathrm{BC}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resistance}\:\mathrm{of}\:\:\mathrm{600}\:\Omega,\:\:\:\mathrm{CD}\:\mathrm{is}\:\mathrm{inductive}\:\mathrm{impedance}\:\left(\mathrm{unknown}\right) \\ $$$$\mathrm{and}\:\mathrm{DA}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:-\:\mathrm{inductive}\:\mathrm{resustance}\:\mathrm{of}\:\:\mathrm{400}\:\Omega.\:\:\mathrm{If}\:\mathrm{balance}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{under} \\ $$$$\mathrm{these}\:\mathrm{conditions}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{inductance}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{branch}\:\:\mathrm{CD}\:\:\mathrm{and}\:\mathrm{show}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{diagram}. \\ $$

Question Number 28821    Answers: 0   Comments: 0

find the value of ∫_0 ^(2π) ((4 cos(4θ))/(5−4cosθ)) dθ .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{4}\:{cos}\left(\mathrm{4}\theta\right)}{\mathrm{5}−\mathrm{4}{cos}\theta}\:{d}\theta\:. \\ $$

Question Number 28626    Answers: 0   Comments: 9

Question Number 28600    Answers: 0   Comments: 4

Question Number 28481    Answers: 0   Comments: 1

Question Number 28431    Answers: 0   Comments: 0

let give w_k = e^(i((2kπ)/n)) k∈Z find the value of Π_(k=0) ^(n−1) (1+(2/(2−w_k ))).

$${let}\:{give}\:{w}_{{k}} =\:{e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:{k}\in{Z}\:\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{2}−{w}_{{k}} \:}\right). \\ $$

  Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com