let x={(1/n)}_(n=1) ^∞ and y={(1/(n+1))}_(n=1) ^∞ be
a sequence of real numbers and
l_(2 ) ={x=(x_1 ,x_2 ,x_3 ,...):Σ_(n=1) ^∞ ∣xi∣^2 <∞}
a linear space.
(1) verify that x and y are in l_2 .
(2) compute the inner product of x
and y on l_2
please help me solve this
question.
let I_n = ∫_0 ^(π/4) (dx/(cos^(2n+1) )) (n∈N)
1) find a and b fromR /∀x∈[0,(π/4)]
(1/(cosx))=((acosx)/(1−sinx)) +((bcosx)/(1+sinx)) .find I_0
2) verify the relation
(1/(cos^(2n+3) x))=(1/(cos^(2n+1) x)) +((sinx sinx)/(cos^(2n+3) )) .find the relation
of recurrence between I_n and I_(n+1) .