Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 110

Question Number 39696    Answers: 1   Comments: 3

Question Number 39689    Answers: 1   Comments: 2

In Lambert W Function How would i simplify x = − ((W(((−ln(4))/8)))/(ln(4))) To get the values

$${In}\:{Lambert}\:{W}\:{Function} \\ $$$$ \\ $$$${How}\:{would}\:{i}\:{simplify} \\ $$$$ \\ $$$${x}\:=\:−\:\frac{{W}\left(\frac{−{ln}\left(\mathrm{4}\right)}{\mathrm{8}}\right)}{{ln}\left(\mathrm{4}\right)} \\ $$$${To}\:{get}\:{the}\:{values} \\ $$$$ \\ $$

Question Number 39727    Answers: 0   Comments: 1

If the average of 4 kids age is 3c and the average of two of them is 33. find the value of c.

$${If}\:{the}\:{average}\:{of}\:\mathrm{4}\:{kids}\:{age}\:{is} \\ $$$$\mathrm{3}{c}\:{and}\:{the}\:{average}\:{of}\:{two}\: \\ $$$${of}\:{them}\:{is}\:\mathrm{33}.\:{find}\:{the}\:{value} \\ $$$${of}\:{c}. \\ $$

Question Number 39650    Answers: 1   Comments: 0

If f be a linear function f (6)−f(12) =2 What is f(12)−f(2).

$${If}\:{f}\:{be}\:{a}\:{linear}\:{function}\:{f}\:\left(\mathrm{6}\right)−{f}\left(\mathrm{12}\right) \\ $$$$=\mathrm{2}\:{What}\:{is}\:{f}\left(\mathrm{12}\right)−{f}\left(\mathrm{2}\right). \\ $$$$ \\ $$

Question Number 39640    Answers: 1   Comments: 0

John′s age is 3x years 3 years after he was 27 years old what was his age 3 years before hence find the sum of the family ages Σ_(x=1) ^(60) (3x)^(3x−1)

$${John}'{s}\:{age}\:{is}\:\mathrm{3}{x}\:{years}\:\mathrm{3}\:{years} \\ $$$${after}\:{he}\:{was}\:\mathrm{27}\:{years}\:{old} \\ $$$${what}\:{was}\:{his}\:{age}\:\mathrm{3}\:{years}\:{before} \\ $$$${hence}\:{find}\:{the}\:{sum}\:{of}\:{the} \\ $$$${family}\:{ages}\:\underset{{x}=\mathrm{1}} {\overset{\mathrm{60}} {\sum}}\left(\mathrm{3}{x}\right)^{\mathrm{3}{x}−\mathrm{1}} \\ $$

Question Number 39611    Answers: 1   Comments: 0

write the expression of electrostatic force between two charges Q_(1 ) and Q_2 separated by distance r. for the following condition 1)in air 2)when die electric present between them 3)when die electric partially fill space betweenp them

$${write}\:{the}\:{expression}\:{of}\:{electrostatic}\:{force} \\ $$$${between}\:{two}\:{charges}\:{Q}_{\mathrm{1}\:} {and}\:{Q}_{\mathrm{2}} \:{separated}\:{by} \\ $$$${distance}\:{r}.\:{for}\:{the}\:{following}\:{condition} \\ $$$$\left.\mathrm{1}\right){in}\:{air} \\ $$$$\left.\mathrm{2}\right){when}\:{die}\:{electric}\:{present}\:{between}\:{them} \\ $$$$\left.\mathrm{3}\right){when}\:{die}\:{electric}\:{partially}\:{fill}\:{space}\:{betweenp} \\ $$$${them} \\ $$

Question Number 39607    Answers: 3   Comments: 0

find the minimum and maximum value of the quadratic functions a) 4x^2 + 5x + 1 b) x + (2/x) = 3 c) x^2 − (x/4) + 6 hence draw each draw

$${find}\:{the}\: \\ $$$${minimum}\:{and}\:{maximum}\:{value} \\ $$$${of}\:{the}\:{quadratic}\:{functions} \\ $$$$\left.{a}\right)\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{1} \\ $$$$\left.{b}\right)\:{x}\:+\:\frac{\mathrm{2}}{{x}}\:=\:\mathrm{3} \\ $$$$\left.{c}\right)\:{x}^{\mathrm{2}} \:−\:\frac{{x}}{\mathrm{4}}\:+\:\mathrm{6} \\ $$$${hence}\:{draw}\:{each}\:{draw} \\ $$

Question Number 39591    Answers: 1   Comments: 0

Given the lines l_1 :−3mx + 3y = 9 and l_(2 ) : y = mx + c find the value of m and c if the point (1,2) lie on both lines. hence the tangent of the curve y = (mx + c)^2 when it moves across the x−axis

$${Given}\:{the}\:{lines}\: \\ $$$${l}_{\mathrm{1}} :−\mathrm{3}{mx}\:+\:\mathrm{3}{y}\:=\:\mathrm{9}\: \\ $$$${and}\:{l}_{\mathrm{2}\:} :\:{y}\:=\:{mx}\:+\:{c} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{m}\:{and}\:{c}\:{if} \\ $$$${the}\:{point}\:\left(\mathrm{1},\mathrm{2}\right)\:{lie}\:{on}\:{both}\:{lines}. \\ $$$${hence}\:{the}\:{tangent}\:{of}\:{the} \\ $$$${curve}\:{y}\:=\:\left({mx}\:+\:{c}\right)^{\mathrm{2}} \\ $$$${when}\:{it}\:{moves}\:{across}\:{the}\:{x}−{axis} \\ $$

Question Number 39588    Answers: 1   Comments: 0

if cos A= (3/5) and tan B = ((12)/5) where A and B are reflex angles find without using tables,the value of a) sin (A − B) b) tan(A−B) c) cos (A + B).

$${if}\:{cos}\:{A}=\:\frac{\mathrm{3}}{\mathrm{5}}\:{and}\:{tan}\:{B}\:=\:\frac{\mathrm{12}}{\mathrm{5}} \\ $$$${where}\:{A}\:{and}\:{B}\:{are}\:{reflex}\:{angles} \\ $$$${find}\:{without}\:{using}\:{tables},{the} \\ $$$${value}\:{of} \\ $$$$\left.{a}\left.\right)\:{sin}\:\left({A}\:−\:{B}\right)\:{b}\right)\:{tan}\left({A}−{B}\right) \\ $$$$\left.{c}\right)\:{cos}\:\left({A}\:+\:{B}\right). \\ $$

Question Number 39587    Answers: 4   Comments: 0

Solve for x in the range 0 ≤ x ≤2π the equations a) cos(x + (π/3)) = 0 b) sin x = cos x. c) sin 2x + 2sin x = 1 + cos x

$${Solve}\:{for}\:{x}\:{in}\:{the}\:{range}\:\mathrm{0}\:\leqslant\:{x}\:\leqslant\mathrm{2}\pi \\ $$$${the}\:{equations} \\ $$$$\left.{a}\right)\:{cos}\left({x}\:+\:\frac{\pi}{\mathrm{3}}\right)\:=\:\mathrm{0}\: \\ $$$$\left.{b}\right)\:{sin}\:{x}\:=\:{cos}\:{x}. \\ $$$$\left.{c}\right)\:{sin}\:\mathrm{2}{x}\:+\:\mathrm{2}{sin}\:{x}\:=\:\mathrm{1}\:+\:{cos}\:{x} \\ $$$$ \\ $$

Question Number 39586    Answers: 2   Comments: 0

show that a) ((1 + 2sin2θ − cos2θ)/(1+sin2θ + cos 2θ)) = tan θ b) tan^2 A − tan^2 B = ((sin^2 A−sin^2 B)/(cos^2 A cos^2 B))

$${show}\:{that}\: \\ $$$$\left.{a}\right)\:\frac{\mathrm{1}\:+\:\mathrm{2}{sin}\mathrm{2}\theta\:−\:{cos}\mathrm{2}\theta}{\mathrm{1}+{sin}\mathrm{2}\theta\:+\:{cos}\:\mathrm{2}\theta}\:=\:{tan}\:\theta \\ $$$$\left.{b}\right)\:{tan}^{\mathrm{2}} {A}\:−\:{tan}^{\mathrm{2}} {B}\:=\:\frac{{sin}^{\mathrm{2}} {A}−{sin}^{\mathrm{2}} {B}}{{cos}^{\mathrm{2}} {A}\:{cos}^{\mathrm{2}} {B}} \\ $$$$ \\ $$$$ \\ $$

Question Number 39464    Answers: 1   Comments: 0

Domain of the explicit form of the function y represented implicitly by the equation (1+x)cosy−x^2 =0 is (a) (−1,1] (b) (−1, 1−(√)5/2] (c) [1−(√)5/2, 1+(√)5/2] (d) [0, 1+(√)5/2]

$${Domain}\:\:{of}\:\:{the}\:\:{explicit}\:\:{form}\:\:{of} \\ $$$${the}\:\:{function}\:\:\:{y}\:\:\:{represented}\: \\ $$$${implicitly}\:\:\:{by}\:\:{the}\:\:{equation}\: \\ $$$$\left(\mathrm{1}+{x}\right){cosy}−{x}^{\mathrm{2}} =\mathrm{0}\:\:{is} \\ $$$$\left({a}\right)\:\:\left(−\mathrm{1},\mathrm{1}\right]\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\:\:\:\left(−\mathrm{1},\:\mathrm{1}−\sqrt{}\mathrm{5}/\mathrm{2}\right] \\ $$$$\left({c}\right)\:\:\:\left[\mathrm{1}−\sqrt{}\mathrm{5}/\mathrm{2},\:\mathrm{1}+\sqrt{}\mathrm{5}/\mathrm{2}\right] \\ $$$$\left({d}\right)\:\:\left[\mathrm{0},\:\mathrm{1}+\sqrt{}\mathrm{5}/\mathrm{2}\right] \\ $$

Question Number 39395    Answers: 0   Comments: 2

Given that θ is an obtuse angle find tan θ if cos θ =(3/5)

$${Given}\:{that}\:\theta\:{is}\:{an}\:{obtuse}\: \\ $$$${angle}\:{find}\:{tan}\:\theta\:{if} \\ $$$${cos}\:\theta\:=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$ \\ $$

Question Number 39337    Answers: 0   Comments: 0

tan^(−1) 2 + tan^(−1) 3=cosec^(−1) x ,then x is equal to (a) 4 (b) (√2) (d) −(√2) (d) none of these

$${tan}^{−\mathrm{1}} \:\mathrm{2}\:+\:{tan}^{−\mathrm{1}} \:\mathrm{3}={cosec}^{−\mathrm{1}} {x}\:\:,{then} \\ $$$${x}\:\:{is}\:\:{equal}\:\:{to} \\ $$$$\:\left({a}\right)\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\:\sqrt{\mathrm{2}}\:\: \\ $$$$\left({d}\right)\:−\sqrt{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({d}\right)\:{none}\:{of}\:{these} \\ $$

Question Number 39289    Answers: 1   Comments: 0

Find the value of x if the matrix (((3x 5x)),((x 3)) ) (((x 1)),((3 x)) ) has no inverse

$${Find}\:{the}\:{value}\:{of}\:{x}\:{if}\: \\ $$$${the}\:{matrix}\: \\ $$$$ \\ $$$$\begin{pmatrix}{\mathrm{3}{x}\:\:\:\:\:\:\:\:\mathrm{5}{x}}\\{{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix}\begin{pmatrix}{{x}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:{x}}\end{pmatrix}\: \\ $$$${has}\:{no}\:{inverse} \\ $$

Question Number 39257    Answers: 0   Comments: 0

Question Number 39256    Answers: 0   Comments: 0

Question Number 39255    Answers: 0   Comments: 0

Question Number 39253    Answers: 0   Comments: 2

Question Number 39258    Answers: 0   Comments: 0

Question Number 39231    Answers: 1   Comments: 0

(sin^(−1) x)^2 + (sin^(−1) y)^2 + 2(sin^(−1) x) (sin^(−1) y)= π^2 ,then x^2 +y^2 is equal to?

$$\left({sin}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} +\:\:\left({sin}^{−\mathrm{1}} {y}\right)^{\mathrm{2}} +\:\:\mathrm{2}\left({sin}^{−\mathrm{1}} {x}\right) \\ $$$$\left({sin}^{−\mathrm{1}} {y}\right)=\:\pi^{\mathrm{2}} ,{then}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{is}\:{equal}\:{to}? \\ $$

Question Number 39222    Answers: 1   Comments: 5

Question Number 39173    Answers: 0   Comments: 0

Given that A and B are two independent Events where P(A) = (4/5) and P(A ∪ B) = ((13)/5) . find a) P(A∩B) b) P(A∣B). hence draw tree Diagram for each posible out come

$${Given}\:{that}\:{A}\:{and}\:{B}\:{are}\:{two} \\ $$$${independent}\:{Events}\: \\ $$$${where}\:{P}\left({A}\right)\:=\:\frac{\mathrm{4}}{\mathrm{5}}\:{and}\: \\ $$$${P}\left({A}\:\cup\:{B}\right)\:=\:\frac{\mathrm{13}}{\mathrm{5}}\:. \\ $$$$\left.{find}\:{a}\right)\:{P}\left({A}\cap{B}\right) \\ $$$$\left.\:\:\:\:\:\:\:\:\:{b}\right)\:{P}\left({A}\mid{B}\right). \\ $$$${hence}\:{draw}\:{tree}\:{Diagram} \\ $$$${for}\:{each}\:{posible}\:{out}\:{come} \\ $$

Question Number 39172    Answers: 1   Comments: 1

find the angle between 3i − 4j and i − j

$${find}\:{the}\:{angle}\:{between}\: \\ $$$$\mathrm{3}{i}\:−\:\mathrm{4}{j}\:{and}\:{i}\:−\:{j} \\ $$

Question Number 39171    Answers: 1   Comments: 0

Given that y = 3x^4 and x increases at the rate of 34% . find the percentage increase in y. [hint: using Bionomial method]

$${Given}\:{that}\: \\ $$$${y}\:=\:\mathrm{3}{x}^{\mathrm{4}} \:{and}\:{x}\:{increases} \\ $$$${at}\:{the}\:{rate}\:{of}\:\mathrm{34\%}\:. \\ $$$${find}\:{the}\:{percentage}\:{increase} \\ $$$${in}\:{y}. \\ $$$$\left[{hint}:\:{using}\:{Bionomial}\:\right. \\ $$$$\left.{method}\right] \\ $$

Question Number 39166    Answers: 1   Comments: 1

Find the value of k if (2,k) ,(3,4) and (6,4) are collinear. hence find the equation on the line 3i − j with the above points

$${Find}\:{the}\:{value}\:{of}\:{k}\:{if} \\ $$$$\left(\mathrm{2},{k}\right)\:,\left(\mathrm{3},\mathrm{4}\right)\:{and}\:\left(\mathrm{6},\mathrm{4}\right)\:{are} \\ $$$${collinear}. \\ $$$${hence}\:{find}\:{the}\:{equation}\:{on} \\ $$$${the}\:{line}\:\mathrm{3}{i}\:−\:{j}\:{with}\:{the}\:{above} \\ $$$${points} \\ $$

  Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com