Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 110

Question Number 40055    Answers: 1   Comments: 0

A boy starts from a point A and moves on a bearing of 20° to a point B which is 5km from A.He then changes his course to a bearing of 11° and moves to a point C which is 12km from B. Find the distance and bearing from C to A.

$${A}\:{boy}\:{starts}\:{from}\:{a}\:{point}\:{A} \\ $$$${and}\:{moves}\:{on}\:{a}\:{bearing}\:{of} \\ $$$$\mathrm{20}°\:{to}\:{a}\:{point}\:{B}\:{which}\:{is} \\ $$$$\mathrm{5}{km}\:{from}\:{A}.{He}\:{then}\:{changes} \\ $$$${his}\:{course}\:{to}\:{a}\:{bearing}\:{of}\: \\ $$$$\mathrm{11}°\:{and}\:{moves}\:{to}\:{a}\:{point}\:{C}\:{which}\:{is} \\ $$$$\mathrm{12}{km}\:{from}\:{B}. \\ $$$${Find}\:{the}\:{distance}\:{and}\:{bearing} \\ $$$${from}\:{C}\:{to}\:{A}. \\ $$$$ \\ $$

Question Number 40054    Answers: 0   Comments: 0

3 boys X,Y,and Z are standing 3 metres north of each other if X and Z are both 1.5m tall and Y is 2m tall. Find a) the bearing from each of the boys b) the bearing if Y moves to the left.

$$\mathrm{3}\:{boys}\:{X},{Y},{and}\:{Z}\:{are}\:{standing} \\ $$$$\mathrm{3}\:{metres}\:{north}\:{of}\:{each}\:{other} \\ $$$${if}\:{X}\:{and}\:{Z}\:{are}\:{both}\:\mathrm{1}.\mathrm{5}{m}\:{tall} \\ $$$${and}\:{Y}\:{is}\:\mathrm{2}{m}\:{tall}. \\ $$$${Find} \\ $$$$\left.{a}\right)\:{the}\:{bearing}\:{from}\:{each}\:{of} \\ $$$${the}\:{boys} \\ $$$$\left.{b}\right)\:{the}\:{bearing}\:{if}\:{Y}\:{moves} \\ $$$${to}\:{the}\:{left}. \\ $$

Question Number 40037    Answers: 1   Comments: 0

Question Number 39899    Answers: 0   Comments: 0

Given the lines l_1 ; 3y = 2x ,l_2 ; y = −((3x)/2) + p and l_3 ; y ^ = x + 1 a) find the value of p if the point of intersection between l_1 and l_2 is (3,5) b) find the cosine of the angle between l_2 and l_3 c) which line holds the point (1,2). d)find the line l_4 with gradient ∫_4 ^π [l_1 + l_2 dx] perpendicur to l_2 ,parrallel to l_1 .

$${Given}\:{the}\:{lines}\: \\ $$$${l}_{\mathrm{1}} ;\:\mathrm{3}{y}\:=\:\mathrm{2}{x}\:,{l}_{\mathrm{2}} ;\:{y}\:=\:−\frac{\mathrm{3}{x}}{\mathrm{2}}\:+\:{p} \\ $$$${and}\:{l}_{\mathrm{3}} ;\:{y}\overset{} {\:}=\:{x}\:+\:\mathrm{1} \\ $$$$\left.{a}\right)\:{find}\:{the}\:{value}\:{of}\:{p}\:{if}\: \\ $$$${the}\:{point}\:{of}\:{intersection}\:{between} \\ $$$${l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} \:{is}\:\left(\mathrm{3},\mathrm{5}\right) \\ $$$$\left.{b}\right)\:{find}\:{the}\:{cosine}\:{of}\:{the}\:{angle} \\ $$$${between}\:{l}_{\mathrm{2}} \:{and}\:{l}_{\mathrm{3}} \\ $$$$\left.{c}\right)\:{which}\:{line}\:{holds}\:{the}\:{point} \\ $$$$\left(\mathrm{1},\mathrm{2}\right). \\ $$$$\left.{d}\right){find}\:{the}\:{line}\:{l}_{\mathrm{4}} \:{with}\:{gradient} \\ $$$$\int_{\mathrm{4}} ^{\pi} \left[{l}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:{dx}\right]\:{perpendicur}\:{to} \\ $$$${l}_{\mathrm{2}} ,{parrallel}\:{to}\:{l}_{\mathrm{1}} . \\ $$

Question Number 39914    Answers: 0   Comments: 1

Question Number 39879    Answers: 2   Comments: 0

let p(x)= x^3 + 3x − 4 find α+β and αβ

$${let}\: \\ $$$${p}\left({x}\right)=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}\:−\:\mathrm{4} \\ $$$${find}\:\alpha+\beta\:{and}\: \\ $$$$\alpha\beta \\ $$$$ \\ $$$$ \\ $$

Question Number 39851    Answers: 2   Comments: 1

Question Number 39827    Answers: 2   Comments: 0

if f(x) = 3x^3 + px^2 + 4x − 8 and (x − 1) is a factor of f(x). a) find the value of p. with these value of p b) solve the equation f(x) = 0. if α and β are roots of f(x), c) find α + β and αβ d) Evaluate α^2 + β^2 hence α − β

$${if}\:{f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{3}} \:+\:{px}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:−\:\mathrm{8} \\ $$$${and}\:\left({x}\:−\:\mathrm{1}\right)\:{is}\:{a}\:{factor}\:{of}\: \\ $$$${f}\left({x}\right). \\ $$$$\left.{a}\right)\:{find}\:{the}\:{value}\:{of}\:{p}. \\ $$$${with}\:{these}\:{value}\:{of}\:{p} \\ $$$$\left.{b}\right)\:{solve}\:{the}\:{equation}\:{f}\left({x}\right)\:=\:\mathrm{0}. \\ $$$${if}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\: \\ $$$${f}\left({x}\right),\: \\ $$$$\left.{c}\right)\:{find}\:\alpha\:+\:\beta\:{and}\:\alpha\beta \\ $$$$\left.{d}\right)\:{Evaluate}\:\alpha^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:{hence}\:\alpha\:−\:\beta \\ $$$$ \\ $$

Question Number 39775    Answers: 0   Comments: 1

Question Number 39774    Answers: 0   Comments: 0

Question Number 39773    Answers: 0   Comments: 0

Question Number 39771    Answers: 0   Comments: 0

Question Number 39769    Answers: 0   Comments: 0

Question Number 39767    Answers: 0   Comments: 0

Question Number 39766    Answers: 0   Comments: 0

Question Number 39765    Answers: 0   Comments: 0

Question Number 39764    Answers: 0   Comments: 0

Question Number 39763    Answers: 0   Comments: 0

Question Number 39761    Answers: 0   Comments: 0

Question Number 39762    Answers: 0   Comments: 0

Question Number 39756    Answers: 1   Comments: 1

A force F = 2t i + 5j acts on a particle of mass 2kg. find the velocity and the magnitude of the impulse that acts on the particle within the time range 1s ≤ t ≤ 3s

$${A}\:{force}\:{F}\:=\:\mathrm{2}{t}\:\boldsymbol{{i}}\:+\:\mathrm{5}\boldsymbol{{j}}\:{acts}\:{on} \\ $$$${a}\:{particle}\:{of}\:{mass}\:\mathrm{2}{kg}.\:{find} \\ $$$${the}\:{velocity}\:{and}\:{the}\:{magnitude} \\ $$$${of}\:{the}\:{impulse}\:{that}\:{acts}\:{on}\: \\ $$$${the}\:{particle}\:{within}\:{the}\:{time} \\ $$$${range}\:\:\mathrm{1}\boldsymbol{{s}}\:\leqslant\:\boldsymbol{{t}}\:\leqslant\:\mathrm{3}\boldsymbol{{s}} \\ $$

Question Number 39700    Answers: 0   Comments: 1

given that f(x)= x^3 − 3x^2 + ax + b and (x−1) is a factor of f(x) also the maximum value of f(x) at poin where x = 1 is 12 find a) (dy/d) (f(x)) b) the values of a and b c) factorise f(x) completely d) hence evaluate ∫_3 ^4 [f(x)] dx

$${given}\:{that}\:{f}\left({x}\right)=\:{x}^{\mathrm{3}} \:−\:\mathrm{3}{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b} \\ $$$${and}\:\left({x}−\mathrm{1}\right)\:{is}\:{a}\:{factor}\:{of}\:{f}\left({x}\right) \\ $$$${also}\:{the}\:{maximum}\:{value}\:{of} \\ $$$${f}\left({x}\right)\:{at}\:{poin}\:{where}\:{x}\:=\:\mathrm{1} \\ $$$${is}\:\mathrm{12}\:{find}\: \\ $$$$\left.{a}\right)\:\frac{{dy}}{{d}}\:\left({f}\left({x}\right)\right) \\ $$$$\left.{b}\right)\:{the}\:{values}\:{of}\:{a}\:{and}\:{b} \\ $$$$\left.{c}\right)\:{factorise}\:{f}\left({x}\right)\:{completely} \\ $$$$\left.{d}\right)\:{hence}\:{evaluate}\:\int_{\mathrm{3}} ^{\mathrm{4}} \left[{f}\left({x}\right)\right]\:{dx} \\ $$

Question Number 39696    Answers: 1   Comments: 3

Question Number 39689    Answers: 1   Comments: 2

In Lambert W Function How would i simplify x = − ((W(((−ln(4))/8)))/(ln(4))) To get the values

$${In}\:{Lambert}\:{W}\:{Function} \\ $$$$ \\ $$$${How}\:{would}\:{i}\:{simplify} \\ $$$$ \\ $$$${x}\:=\:−\:\frac{{W}\left(\frac{−{ln}\left(\mathrm{4}\right)}{\mathrm{8}}\right)}{{ln}\left(\mathrm{4}\right)} \\ $$$${To}\:{get}\:{the}\:{values} \\ $$$$ \\ $$

Question Number 39727    Answers: 0   Comments: 1

If the average of 4 kids age is 3c and the average of two of them is 33. find the value of c.

$${If}\:{the}\:{average}\:{of}\:\mathrm{4}\:{kids}\:{age}\:{is} \\ $$$$\mathrm{3}{c}\:{and}\:{the}\:{average}\:{of}\:{two}\: \\ $$$${of}\:{them}\:{is}\:\mathrm{33}.\:{find}\:{the}\:{value} \\ $$$${of}\:{c}. \\ $$

Question Number 39650    Answers: 1   Comments: 0

If f be a linear function f (6)−f(12) =2 What is f(12)−f(2).

$${If}\:{f}\:{be}\:{a}\:{linear}\:{function}\:{f}\:\left(\mathrm{6}\right)−{f}\left(\mathrm{12}\right) \\ $$$$=\mathrm{2}\:{What}\:{is}\:{f}\left(\mathrm{12}\right)−{f}\left(\mathrm{2}\right). \\ $$$$ \\ $$

  Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com