Question and Answers Forum
All Questions Topic List
OthersQuestion and Answers: Page 101
Question Number 52079 Answers: 1 Comments: 1
$${Sum}\:{to}\:{the}\:{n}\:{terms}\:{of}\:{the}\:{series}\:{whose}\:{n}^{{th}\:} \:{term}\:{is}\:\mathrm{2}^{{n}−\mathrm{1}\:} \:+\:\mathrm{8}{n}^{\mathrm{3}} \:−\mathrm{6}{n}^{\mathrm{2}} \\ $$
Question Number 52075 Answers: 0 Comments: 0
Question Number 52025 Answers: 4 Comments: 8
Question Number 51933 Answers: 2 Comments: 1
$$\mathrm{If}\:\:\mathrm{p}\:=\:\mathrm{cos}\:\theta\:+\:\mathrm{i}\:\mathrm{sin}\:\theta\:\:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\:\:\:\mathrm{q}\:\:=\:\:\mathrm{cos}\:\phi\:+\:\mathrm{i}\:\mathrm{sin}\:\phi \\ $$$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\frac{\left(\mathrm{p}\:+\:\mathrm{q}\right)\left(\mathrm{pq}\:−\:\mathrm{1}\right)}{\left(\mathrm{p}\:−\:\mathrm{q}\right)\left(\mathrm{pq}\:+\:\mathrm{1}\right)}\:\:=\:\:\frac{\mathrm{sin}\:\theta\:+\:\mathrm{sin}\:\phi}{\mathrm{sin}\:\theta\:−\:\mathrm{sin}\:\phi} \\ $$
Question Number 51897 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:\:=\:\:\mathrm{2cos}\theta\:,\:\:\:\:\:\:\mathrm{y}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:\:=\:\:\mathrm{2cos}\phi\:,\:\:\:\:\:\:\:\:\:\mathrm{z}\:+\:\frac{\mathrm{1}}{\mathrm{z}}\:\:=\:\:\mathrm{2cos}\psi \\ $$$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\:\mathrm{xyz}\:+\:\frac{\mathrm{1}}{\mathrm{xyz}}\:\:=\:\:\mathrm{2cos}\left(\theta\:+\:\phi\:+\:\psi\right) \\ $$
Question Number 51887 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that};\:\:\:\:\mathrm{tanh}\left(\mathrm{log}\:\sqrt{\mathrm{3}}\right)\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 52140 Answers: 2 Comments: 2
Question Number 51861 Answers: 0 Comments: 1
Question Number 51837 Answers: 1 Comments: 1
Question Number 51721 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{given}\:\mathrm{that}:\:\:\:\:\:\mid\mathrm{x}\:+\:\mathrm{i}\mid\:\geqslant\:\frac{\mathrm{1}}{\mathrm{x}} \\ $$
Question Number 51673 Answers: 0 Comments: 1
Question Number 51643 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mid\mathrm{z}\mid\:=\:\mathrm{1},\:\:\:\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\frac{\mathrm{z}\:−\:\mathrm{1}}{\overset{−} {\mathrm{z}}\:−\:\mathrm{1}}\:\:\:\:\:\:\left(\mathrm{z}\:\neq\:\mathrm{1}\right)\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{pure}\:\mathrm{imaginary} \\ $$
Question Number 51630 Answers: 1 Comments: 4
Question Number 51628 Answers: 0 Comments: 2
Question Number 51621 Answers: 0 Comments: 6
Question Number 51571 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\alpha\:−\:\mathrm{j}\beta\:\:=\:\:\frac{\mathrm{1}}{\mathrm{a}\:−\:\mathrm{jb}}\:\:,\:\:\:\:\:\:\mathrm{where}\:\:\:\alpha,\:\beta,\:\mathrm{a},\:\mathrm{b}\:\:\mathrm{are}\:\mathrm{real},\:\mathrm{express}\:\:\mathrm{b}\:\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\:\alpha,\:\beta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Answer}:\:\:\:\:\:\:\:\:\:\:\frac{−\:\beta}{\alpha^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:−\:\mathrm{2}\alpha\:+\:\mathrm{1}} \\ $$
Question Number 51448 Answers: 0 Comments: 3
Question Number 51420 Answers: 2 Comments: 0
$$\int\:\:\frac{\mathrm{e}^{\mathrm{3x}} }{\mathrm{1}\:+\:\mathrm{e}^{\mathrm{x}} }\:\mathrm{dx} \\ $$
Question Number 51389 Answers: 1 Comments: 2
Question Number 51360 Answers: 0 Comments: 0
Question Number 51321 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{B}\:\mathrm{C}\:\mathrm{D}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{parallelogram}\:\mathrm{on}\:\mathrm{the}\:\mathrm{Argand}\:\mathrm{plane}.\:\mathrm{The}\: \\ $$$$\mathrm{affixes}\:\mathrm{of}\:\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{are}\:\:\:\mathrm{8}\:+\:\mathrm{5i},\:\:−\:\mathrm{7}\:−\:\mathrm{5i},\:\:−\:\mathrm{5}\:+\:\mathrm{5i}\:\:\mathrm{respectively} \\ $$$$.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{affix}\:\mathrm{of}\:\:\mathrm{D} \\ $$
Question Number 51320 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{represent}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\:\mathrm{z}_{\mathrm{1}} ,\:\mathrm{z}_{\mathrm{2}} ,\:\mathrm{z}_{\mathrm{3}} \: \\ $$$$\mathrm{respectively}.\:\mathrm{And}\:\mathrm{G}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{A}\:\mathrm{B}\:\mathrm{C},\:\:\mathrm{if} \\ $$$$\mathrm{4z}_{\mathrm{1}} \:+\:\mathrm{z}_{\mathrm{2}} \:+\:\mathrm{z}_{\mathrm{3}} \:\:=\:\:\mathrm{0},\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mid}\:\mathrm{point}\:\mathrm{of}\:\:\mathrm{AG}. \\ $$
Question Number 51316 Answers: 0 Comments: 2
Question Number 51314 Answers: 0 Comments: 1
Question Number 51312 Answers: 0 Comments: 1
Question Number 51307 Answers: 0 Comments: 3
Pg 96 Pg 97 Pg 98 Pg 99 Pg 100 Pg 101 Pg 102 Pg 103 Pg 104 Pg 105
Terms of Service
Privacy Policy
Contact: info@tinkutara.com