Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23864 by Tinkutara last updated on 08/Nov/17

One mole of steam is condensed at  100°C, the water is cooled to 0°C and  frozen to ice. Which of the following  statements are correct, given heat of  vapourization and fusion are 540 cal/  gm and 80 cal/gm? (average heat  capacity of liquid water = 1 cal gm^(−1)   degree^(−1) )  (1) Entropy change during the  condensation of steam is −26.06 cal/°C  (2) Entropy change during cooling of  water from 100°C to 0°C is −5.62 cal/°C  (3) Entropy change during freezing of  water at 0°C is −5.27 cal/°C  (4) Total entropy change is −36.95  cal/°C

$$\mathrm{One}\:\mathrm{mole}\:\mathrm{of}\:\mathrm{steam}\:\mathrm{is}\:\mathrm{condensed}\:\mathrm{at} \\ $$$$\mathrm{100}°\mathrm{C},\:\mathrm{the}\:\mathrm{water}\:\mathrm{is}\:\mathrm{cooled}\:\mathrm{to}\:\mathrm{0}°\mathrm{C}\:\mathrm{and} \\ $$$$\mathrm{frozen}\:\mathrm{to}\:\mathrm{ice}.\:\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{statements}\:\mathrm{are}\:\mathrm{correct},\:\mathrm{given}\:\mathrm{heat}\:\mathrm{of} \\ $$$$\mathrm{vapourization}\:\mathrm{and}\:\mathrm{fusion}\:\mathrm{are}\:\mathrm{540}\:\mathrm{cal}/ \\ $$$$\mathrm{gm}\:\mathrm{and}\:\mathrm{80}\:\mathrm{cal}/\mathrm{gm}?\:\left(\mathrm{average}\:\mathrm{heat}\right. \\ $$$$\mathrm{capacity}\:\mathrm{of}\:\mathrm{liquid}\:\mathrm{water}\:=\:\mathrm{1}\:\mathrm{cal}\:\mathrm{gm}^{−\mathrm{1}} \\ $$$$\left.\mathrm{degree}^{−\mathrm{1}} \right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Entropy}\:\mathrm{change}\:\mathrm{during}\:\mathrm{the} \\ $$$$\mathrm{condensation}\:\mathrm{of}\:\mathrm{steam}\:\mathrm{is}\:−\mathrm{26}.\mathrm{06}\:\mathrm{cal}/°\mathrm{C} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Entropy}\:\mathrm{change}\:\mathrm{during}\:\mathrm{cooling}\:\mathrm{of} \\ $$$$\mathrm{water}\:\mathrm{from}\:\mathrm{100}°\mathrm{C}\:\mathrm{to}\:\mathrm{0}°\mathrm{C}\:\mathrm{is}\:−\mathrm{5}.\mathrm{62}\:\mathrm{cal}/°\mathrm{C} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Entropy}\:\mathrm{change}\:\mathrm{during}\:\mathrm{freezing}\:\mathrm{of} \\ $$$$\mathrm{water}\:\mathrm{at}\:\mathrm{0}°\mathrm{C}\:\mathrm{is}\:−\mathrm{5}.\mathrm{27}\:\mathrm{cal}/°\mathrm{C} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Total}\:\mathrm{entropy}\:\mathrm{change}\:\mathrm{is}\:−\mathrm{36}.\mathrm{95} \\ $$$$\mathrm{cal}/°\mathrm{C} \\ $$

Answered by ajfour last updated on 09/Nov/17

All correct (I believe).       ∫dS = ∫ (dQ/T) .  during conensation  T=373K  (constant)  ∫dQ=−mL_(vap)   So   △S_(condensation) =−((18×540)/(373)) (J/K)      =−26.06 J/K  △S_(cooling) =∫_(373) ^(  273)   ((mc dT)/T)     =−18ln (((373)/(273))) ≈ −18ln (((124.3)/(91)))     ≈−18×2.303×(3log 5−2log 3−1)     ≈ −18×2.3×[3(1−0.3010)−2×0.4771−1]  ≈ −18×2.3[2.1−1.9542]  ≈ −18×2.3×0.145  ≈ −9×2.3×0.29= 20.7×0.29 J/K      ≈−6 J/K .  △S_(freezing) =−((mL_(fusion) )/T_f )            =((−18×80)/(273)) = −5.27 J/K  △S_(net) =−(26+6+5.3)J/K              =−37.3 J/K .

$${All}\:{correct}\:\left({I}\:{believe}\right).\:\: \\ $$$$\:\:\:\int{dS}\:=\:\int\:\frac{{dQ}}{{T}}\:. \\ $$$${during}\:{conensation} \\ $$$${T}=\mathrm{373}{K}\:\:\left({constant}\right) \\ $$$$\int{dQ}=−{mL}_{{vap}} \\ $$$${So}\:\:\:\bigtriangleup{S}_{{condensation}} =−\frac{\mathrm{18}×\mathrm{540}}{\mathrm{373}}\:\frac{{J}}{{K}} \\ $$$$\:\:\:\:=−\mathrm{26}.\mathrm{06}\:{J}/{K} \\ $$$$\bigtriangleup{S}_{{cooling}} =\int_{\mathrm{373}} ^{\:\:\mathrm{273}} \:\:\frac{{mc}\:{dT}}{{T}} \\ $$$$\:\:\:=−\mathrm{18ln}\:\left(\frac{\mathrm{373}}{\mathrm{273}}\right)\:\approx\:−\mathrm{18ln}\:\left(\frac{\mathrm{124}.\mathrm{3}}{\mathrm{91}}\right) \\ $$$$\:\:\:\approx−\mathrm{18}×\mathrm{2}.\mathrm{303}×\left(\mathrm{3log}\:\mathrm{5}−\mathrm{2log}\:\mathrm{3}−\mathrm{1}\right)\: \\ $$$$\:\:\approx\:−\mathrm{18}×\mathrm{2}.\mathrm{3}×\left[\mathrm{3}\left(\mathrm{1}−\mathrm{0}.\mathrm{3010}\right)−\mathrm{2}×\mathrm{0}.\mathrm{4771}−\mathrm{1}\right] \\ $$$$\approx\:−\mathrm{18}×\mathrm{2}.\mathrm{3}\left[\mathrm{2}.\mathrm{1}−\mathrm{1}.\mathrm{9542}\right] \\ $$$$\approx\:−\mathrm{18}×\mathrm{2}.\mathrm{3}×\mathrm{0}.\mathrm{145} \\ $$$$\approx\:−\mathrm{9}×\mathrm{2}.\mathrm{3}×\mathrm{0}.\mathrm{29}=\:\mathrm{20}.\mathrm{7}×\mathrm{0}.\mathrm{29}\:{J}/{K}\: \\ $$$$\:\:\:\approx−\mathrm{6}\:{J}/{K}\:. \\ $$$$\bigtriangleup{S}_{{freezing}} =−\frac{{mL}_{{fusion}} }{{T}_{{f}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{−\mathrm{18}×\mathrm{80}}{\mathrm{273}}\:=\:−\mathrm{5}.\mathrm{27}\:{J}/{K} \\ $$$$\bigtriangleup{S}_{{net}} =−\left(\mathrm{26}+\mathrm{6}+\mathrm{5}.\mathrm{3}\right){J}/{K} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{37}.\mathrm{3}\:{J}/{K}\:. \\ $$

Commented by Tinkutara last updated on 09/Nov/17

Why in calculating ΔS_(condensation) and  ΔS_(freezing)  you have taken them to be  −mL? Why not +mL? I know that  entropy decreases but in formula  there is only + sign.

$${Why}\:{in}\:{calculating}\:\Delta{S}_{{condensation}} {and} \\ $$$$\Delta{S}_{{freezing}} \:{you}\:{have}\:{taken}\:{them}\:{to}\:{be} \\ $$$$−{mL}?\:{Why}\:{not}\:+{mL}?\:{I}\:{know}\:{that} \\ $$$${entropy}\:{decreases}\:{but}\:{in}\:{formula} \\ $$$${there}\:{is}\:{only}\:+\:{sign}. \\ $$

Commented by Tinkutara last updated on 10/Nov/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 09/Nov/17

dQ is heat received by system;  and during freezing or during  condensation heat is given out  by the system so ∫dQ =−∣mL∣ .

$${dQ}\:{is}\:{heat}\:{received}\:{by}\:{system}; \\ $$$${and}\:{during}\:{freezing}\:{or}\:{during} \\ $$$${condensation}\:{heat}\:{is}\:{given}\:{out} \\ $$$${by}\:{the}\:{system}\:{so}\:\int{dQ}\:=−\mid{mL}\mid\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com