Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 147147 by nadovic last updated on 18/Jul/21

 One end of an inextensible string is   fixed to a ceiling and the other end is   tied to a wooden block. The block is   pulled aside by a horizontal force P,   such that the string now makes an   angle of 45° with the downward    vertical. When the force P  is raised   through an angle of 30°, it decreases by   8N to keep the system in equilibrium   without shifting the string. Find the           (a) value of P.           (b) mass of the block.

$$\:\mathrm{One}\:\mathrm{end}\:\mathrm{of}\:\mathrm{an}\:\mathrm{inextensible}\:\mathrm{string}\:\mathrm{is} \\ $$$$\:\mathrm{fixed}\:\mathrm{to}\:\mathrm{a}\:\mathrm{ceiling}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{is} \\ $$$$\:\mathrm{tied}\:\mathrm{to}\:\mathrm{a}\:\mathrm{wooden}\:\mathrm{block}.\:\mathrm{The}\:\mathrm{block}\:\mathrm{is} \\ $$$$\:\mathrm{pulled}\:\mathrm{aside}\:\mathrm{by}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{force}\:\boldsymbol{{P}}, \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{string}\:\mathrm{now}\:\mathrm{makes}\:\mathrm{an} \\ $$$$\:\mathrm{angle}\:\mathrm{of}\:\mathrm{45}°\:\mathrm{with}\:\mathrm{the}\:\mathrm{downward}\: \\ $$$$\:\mathrm{vertical}.\:\mathrm{When}\:\mathrm{the}\:\mathrm{force}\:\boldsymbol{{P}}\:\:\mathrm{is}\:\mathrm{raised} \\ $$$$\:\mathrm{through}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{30}°,\:\mathrm{it}\:\mathrm{decreases}\:\mathrm{by} \\ $$$$\:\mathrm{8N}\:\mathrm{to}\:\mathrm{keep}\:\mathrm{the}\:\mathrm{system}\:\mathrm{in}\:\mathrm{equilibrium} \\ $$$$\:\mathrm{without}\:\mathrm{shifting}\:\mathrm{the}\:\mathrm{string}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\left({a}\right)\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{{P}}. \\ $$$$\:\:\:\:\:\:\:\:\:\left({b}\right)\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{block}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com