Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20425 by Tinkutara last updated on 27/Aug/17

On a frictionless horizontal surface,  assumed to be the x-y plane, a small  trolley A is moving along a straight  line parallel to the y-axis (see figure)  with a constant velocity of ((√3) − 1) m/s.  At a particular instant, when the line  OA makes an angle of 45° with the  x-axis, a ball is thrown along the  surface from the origin O. Its velocity  makes an angle φ with x-axis and it  hits the trolley.  1. The motion of the ball is observed from  the frame of the trolley. Calculate the  angle θ made by the velocity vector of  the ball with the x-axis in this frame.  2. Find the speed of the ball with  respect to the surface, if φ = ((4θ)/3)

$$\mathrm{On}\:\mathrm{a}\:\mathrm{frictionless}\:\mathrm{horizontal}\:\mathrm{surface}, \\ $$$$\mathrm{assumed}\:\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:{x}-{y}\:\mathrm{plane},\:\mathrm{a}\:\mathrm{small} \\ $$$$\mathrm{trolley}\:{A}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:{y}-\mathrm{axis}\:\left(\mathrm{see}\:\mathrm{figure}\right) \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{velocity}\:\mathrm{of}\:\left(\sqrt{\mathrm{3}}\:−\:\mathrm{1}\right)\:\mathrm{m}/\mathrm{s}. \\ $$$$\mathrm{At}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{instant},\:\mathrm{when}\:\mathrm{the}\:\mathrm{line} \\ $$$${OA}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{45}°\:\mathrm{with}\:\mathrm{the} \\ $$$${x}-\mathrm{axis},\:\mathrm{a}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{surface}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin}\:{O}.\:\mathrm{Its}\:\mathrm{velocity} \\ $$$$\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\phi\:\mathrm{with}\:{x}-\mathrm{axis}\:\mathrm{and}\:\mathrm{it} \\ $$$$\mathrm{hits}\:\mathrm{the}\:\mathrm{trolley}. \\ $$$$\mathrm{1}.\:\mathrm{The}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{observed}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{frame}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trolley}.\:\mathrm{Calculate}\:\mathrm{the} \\ $$$$\mathrm{angle}\:\theta\:\mathrm{made}\:\mathrm{by}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{vector}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{ball}\:\mathrm{with}\:\mathrm{the}\:{x}-\mathrm{axis}\:\mathrm{in}\:\mathrm{this}\:\mathrm{frame}. \\ $$$$\mathrm{2}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{with} \\ $$$$\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{surface},\:\mathrm{if}\:\phi\:=\:\frac{\mathrm{4}\theta}{\mathrm{3}} \\ $$

Commented by Tinkutara last updated on 26/Aug/17

Answered by ajfour last updated on 28/Aug/17

(1.)  let the trolley move in the line  x=a and is hit by the ball in time t.  let speed of trolley be u,and that  of ball v.   atan φ=a+ut  asec φ=vt  ⇒  ((atan φ−a)/u)=((asec φ)/v)  or      vtan φ−v=usec φ        vsin φ−vcos φ=u  ⇒  ((vsin φ−u)/(vcos φ))=1 =tan θ   So θ=45°     (2.)    φ=((4θ)/3) =(4/3)(45°)=60°       ((vsin φ−u)/(vcos φ))=1 =tan θ   ⇒ ((v(√3))/2)−((√3)−1)=(v/2)  ⇒    v((√3)−1) = 2((√3)−1)           v= 2m/s .

$$\left(\mathrm{1}.\right) \\ $$$${let}\:{the}\:{trolley}\:{move}\:{in}\:{the}\:{line} \\ $$$${x}=\boldsymbol{{a}}\:{and}\:{is}\:{hit}\:{by}\:{the}\:{ball}\:{in}\:{time}\:\boldsymbol{{t}}. \\ $$$${let}\:{speed}\:{of}\:{trolley}\:{be}\:\boldsymbol{{u}},{and}\:{that} \\ $$$${of}\:{ball}\:\boldsymbol{{v}}. \\ $$$$\:{a}\mathrm{tan}\:\phi={a}+{ut} \\ $$$${a}\mathrm{sec}\:\phi={vt} \\ $$$$\Rightarrow\:\:\frac{{a}\mathrm{tan}\:\phi−{a}}{{u}}=\frac{{a}\mathrm{sec}\:\phi}{{v}} \\ $$$${or}\:\:\:\:\:\:{v}\mathrm{tan}\:\phi−{v}={u}\mathrm{sec}\:\phi \\ $$$$\:\:\:\:\:\:{v}\mathrm{sin}\:\phi−{v}\mathrm{cos}\:\phi={u} \\ $$$$\Rightarrow\:\:\frac{{v}\mathrm{sin}\:\phi−{u}}{{v}\mathrm{cos}\:\phi}=\mathrm{1}\:=\mathrm{tan}\:\theta\: \\ $$$${So}\:\theta=\mathrm{45}°\: \\ $$$$ \\ $$$$\left(\mathrm{2}.\right)\:\:\:\:\phi=\frac{\mathrm{4}\theta}{\mathrm{3}}\:=\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{45}°\right)=\mathrm{60}° \\ $$$$\:\:\:\:\:\frac{{v}\mathrm{sin}\:\phi−{u}}{{v}\mathrm{cos}\:\phi}=\mathrm{1}\:=\mathrm{tan}\:\theta\: \\ $$$$\Rightarrow\:\frac{{v}\sqrt{\mathrm{3}}}{\mathrm{2}}−\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)=\frac{{v}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{v}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\:=\:\mathrm{2}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{{v}}=\:\mathrm{2}{m}/{s}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 26/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by Tinkutara last updated on 28/Aug/17

Thank you!

$$\mathrm{Thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com