Question Number 134960 by bobhans last updated on 09/Mar/21 | ||
![]() | ||
$$\mathrm{Number}\:\mathrm{theory} \\ $$A palindrome is a number that reads the same backwards as forwards, as 3141413. (a)How many two-digit palindromes are there? (b)How many three-digit ones? (c)How many k-digits ones? | ||
Answered by mr W last updated on 09/Mar/21 | ||
![]() | ||
$$\left({c}\right)\:{k}−{digit}\:{numbers} \\ $$$${case}\:\mathrm{1}:\:{k}=\mathrm{2}{n} \\ $$$$\mathrm{XYYY}...\mathrm{YY}...\mathrm{YYYX} \\ $$$$\mathrm{X}:\:\mathrm{1}−\mathrm{9} \\ $$$$\mathrm{Y}:\:\mathrm{0}−\mathrm{9} \\ $$$$\Rightarrow{number}\:{of}\:{numbers}=\mathrm{9}×\mathrm{10}^{{n}−\mathrm{1}} \\ $$$${case}\:\mathrm{2}:\:{k}=\mathrm{2}{n}+\mathrm{1} \\ $$$$\mathrm{XYYY}...\mathrm{YZY}...\mathrm{YYYX} \\ $$$$\mathrm{X}:\:\mathrm{1}−\mathrm{9} \\ $$$$\mathrm{Y}:\:\mathrm{0}−\mathrm{9} \\ $$$$\mathrm{Z}:\:\mathrm{0}−\mathrm{9} \\ $$$$\Rightarrow{number}\:{of}\:{numbers}=\mathrm{9}×\mathrm{10}^{{n}} \\ $$$${generally}\:\mathrm{9}×\mathrm{10}^{\lfloor\frac{{k}+\mathrm{1}}{\mathrm{2}}\rfloor−\mathrm{1}} \\ $$$${k}=\mathrm{2}:\:\mathrm{9}×\mathrm{10}^{\mathrm{0}} =\mathrm{9}\:{numbers} \\ $$$${k}=\mathrm{3}:\:\mathrm{9}×\mathrm{10}^{\mathrm{1}} =\mathrm{90}\:{numbers} \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 09/Mar/21 | ||
![]() | ||
$$\mathcal{W}{onderful}\:\:\boldsymbol{{sir}}! \\ $$ | ||
Commented by mr W last updated on 09/Mar/21 | ||
![]() | ||
$${thanks}\:{sir}! \\ $$ | ||
Commented by mr W last updated on 09/Mar/21 | ||
![]() | ||
$${it}\:{seems}\:{you}\:{are}\:{not}\:{so}\:{often}\:{here}\:{as} \\ $$$${before}. \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 09/Mar/21 | ||
![]() | ||
$${Yes}\:\boldsymbol{{sir}}\:{you}'{re}\:{right}.\:{I}'{m}\:{not}\:{able} \\ $$$${to}\:{concentrate}\:{much}. \\ $$ | ||
Commented by bobhans last updated on 09/Mar/21 | ||
![]() | ||
$$\mathrm{yess} \\ $$ | ||
Commented by liberty last updated on 09/Mar/21 | ||
![]() | ||
$$\mathrm{how}\:\mathrm{many}\:\mathrm{four}\:\mathrm{digit}\:\mathrm{ones}\:\mathrm{sir}? \\ $$$$\mathrm{k}=\mathrm{2}×\mathrm{2}\:\Rightarrow\mathrm{n}=\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{number}\:=\:\mathrm{9}×\mathrm{10}^{\mathrm{2}−\mathrm{1}} \:=\:\mathrm{90}? \\ $$ | ||
Commented by mr W last updated on 10/Mar/21 | ||
![]() | ||
$${yes} \\ $$ | ||