Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 34029 by rahul 19 last updated on 29/Apr/18

Number of integral values of x for  which   ((((π/2^(tan^(−1) x) )−4)(x−4)(x−10))/(x! − (x−1)!)) < 0

$$\boldsymbol{{N}}{umber}\:{of}\:{integral}\:{values}\:{of}\:{x}\:{for} \\ $$$${which}\: \\ $$$$\frac{\left(\frac{\pi}{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} {x}} }−\mathrm{4}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)}{{x}!\:−\:\left({x}−\mathrm{1}\right)!}\:<\:\mathrm{0} \\ $$

Commented by rahul 19 last updated on 29/Apr/18

x!= 1×2×3.........×(x−1)×x.

$${x}!=\:\mathrm{1}×\mathrm{2}×\mathrm{3}.........×\left({x}−\mathrm{1}\right)×{x}. \\ $$

Answered by MJS last updated on 29/Apr/18

f(x)=((((π/2^(tan^(−1) x) )−4)(x−4)(x−10))/(x! − (x−1)!))<0    x!−(x−1)!>0 ∀ x∈N  ⇒ ((π/2^(tan^(−1) x) )−4)(x−4)(x−10)<0    (π/2^(tan^(−1) x) )−4=((π−4×2^(tan^(−1)  x) )/2^(tan^(−1)  x) )  tan^(−1)  x>0 ⇒ 2^(tan^(−1)  x) >1 ⇒ ((π−4×2^(tan^(−1)  x) )/2^(tan^(−1)  x) )<0 ∀x∈N  ⇒ (x−4)(x−10)>0    x−4<0 ∧ x−10<0 ⇒ x<4  x−4>0 ∧ x−10>0 ⇒ x>10    f(x)≥0 ⇒ 4≤x≤10  f(x) is not defined for x=0 ∧ x=1  f(x)<0 ⇒ x∈{2; 3}∪{x∈N∣x>10}

$${f}\left({x}\right)=\frac{\left(\frac{\pi}{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} {x}} }−\mathrm{4}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)}{{x}!\:−\:\left({x}−\mathrm{1}\right)!}<\mathrm{0} \\ $$$$ \\ $$$${x}!−\left({x}−\mathrm{1}\right)!>\mathrm{0}\:\forall\:{x}\in\mathbb{N} \\ $$$$\Rightarrow\:\left(\frac{\pi}{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} {x}} }−\mathrm{4}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)<\mathrm{0} \\ $$$$ \\ $$$$\frac{\pi}{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} {x}} }−\mathrm{4}=\frac{\pi−\mathrm{4}×\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} \:{x}} }{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} \:{x}} } \\ $$$$\mathrm{tan}^{−\mathrm{1}} \:{x}>\mathrm{0}\:\Rightarrow\:\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} \:{x}} >\mathrm{1}\:\Rightarrow\:\frac{\pi−\mathrm{4}×\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} \:{x}} }{\mathrm{2}^{\mathrm{tan}^{−\mathrm{1}} \:{x}} }<\mathrm{0}\:\forall{x}\in\mathbb{N} \\ $$$$\Rightarrow\:\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)>\mathrm{0} \\ $$$$ \\ $$$${x}−\mathrm{4}<\mathrm{0}\:\wedge\:{x}−\mathrm{10}<\mathrm{0}\:\Rightarrow\:{x}<\mathrm{4} \\ $$$${x}−\mathrm{4}>\mathrm{0}\:\wedge\:{x}−\mathrm{10}>\mathrm{0}\:\Rightarrow\:{x}>\mathrm{10} \\ $$$$ \\ $$$${f}\left({x}\right)\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{4}\leqslant{x}\leqslant\mathrm{10} \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}=\mathrm{0}\:\wedge\:{x}=\mathrm{1} \\ $$$${f}\left({x}\right)<\mathrm{0}\:\Rightarrow\:{x}\in\left\{\mathrm{2};\:\mathrm{3}\right\}\cup\left\{{x}\in\mathbb{N}\mid{x}>\mathrm{10}\right\} \\ $$

Commented by rahul 19 last updated on 29/Apr/18

You are getting this answer after   assuming tan^(−1) x > 0 , right ?  what if it′s <0 ?

$${You}\:{are}\:\mathrm{getting}\:\mathrm{this}\:\mathrm{answer}\:\mathrm{after}\: \\ $$$$\mathrm{assuming}\:\mathrm{tan}^{−\mathrm{1}} {x}\:>\:\mathrm{0}\:,\:{right}\:? \\ $$$${what}\:{if}\:{it}'{s}\:<\mathrm{0}\:? \\ $$

Commented by MJS last updated on 29/Apr/18

tan^(−1)  x≥0 for all x≥0  and x! is not defined for x<0

$$\mathrm{tan}^{−\mathrm{1}} \:{x}\geqslant\mathrm{0}\:\mathrm{for}\:\mathrm{all}\:{x}\geqslant\mathrm{0} \\ $$$$\mathrm{and}\:{x}!\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}<\mathrm{0} \\ $$

Commented by rahul 19 last updated on 29/Apr/18

Ohh, yes!  Thank you sir.

$${Ohh},\:{yes}! \\ $$$$\mathscr{T}{hank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com