Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 179738 by SLVR last updated on 01/Nov/22

Number of distributions of  12 different things be taken to  3different boxes so as  1)5 things in 1st box exactly  2)5 things in any one box?

$${Number}\:{of}\:{distributions}\:{of} \\ $$$$\mathrm{12}\:{different}\:{things}\:{be}\:{taken}\:{to} \\ $$$$\mathrm{3}{different}\:{boxes}\:{so}\:{as} \\ $$$$\left.\mathrm{1}\right)\mathrm{5}\:{things}\:{in}\:\mathrm{1}{st}\:{box}\:{exactly} \\ $$$$\left.\mathrm{2}\right)\mathrm{5}\:{things}\:{in}\:{any}\:{one}\:{box}? \\ $$

Answered by SLVR last updated on 01/Nov/22

I am getting 12_C_5  ×2^7  for  1st and but 2nd  question.=>>please

$${I}\:{am}\:{getting}\:\mathrm{12}_{{C}_{\mathrm{5}} } ×\mathrm{2}^{\mathrm{7}} \:{for} \\ $$$$\mathrm{1}{st}\:{and}\:{but}\:\mathrm{2}{nd} \\ $$$${question}.=>>{please} \\ $$

Answered by mr W last updated on 03/Nov/22

1)  5 things for the 1st box: C_5 ^(12)   7 things into two boxes: 2^7   ⇒C_5 ^(12) ×2^7 =101376  2)  not clear,  what you mean.  at least or at most or exactly 5 things  in one of the three boxes?

$$\left.\mathrm{1}\right) \\ $$$$\mathrm{5}\:{things}\:{for}\:{the}\:\mathrm{1}{st}\:{box}:\:{C}_{\mathrm{5}} ^{\mathrm{12}} \\ $$$$\mathrm{7}\:{things}\:{into}\:{two}\:{boxes}:\:\mathrm{2}^{\mathrm{7}} \\ $$$$\Rightarrow{C}_{\mathrm{5}} ^{\mathrm{12}} ×\mathrm{2}^{\mathrm{7}} =\mathrm{101376} \\ $$$$\left.\mathrm{2}\right) \\ $$$${not}\:{clear},\:\:{what}\:{you}\:{mean}. \\ $$$${at}\:{least}\:{or}\:{at}\:{most}\:{or}\:{exactly}\:\mathrm{5}\:{things} \\ $$$${in}\:{one}\:{of}\:{the}\:{three}\:{boxes}? \\ $$

Commented by SLVR last updated on 02/Nov/22

sir..so kind of you..  here in 2nd i need 5 exactly  but what if    a)if at least one  in 2nd box?  b)if  at most 7 in 2nd box  please sir Prof.Mr.W

$${sir}..{so}\:{kind}\:{of}\:{you}.. \\ $$$${here}\:{in}\:\mathrm{2}{nd}\:{i}\:{need}\:\mathrm{5}\:{exactly} \\ $$$$\left.{but}\:{what}\:{if}\:\:\:\:{a}\right){if}\:{at}\:{least}\:{one} \\ $$$${in}\:\mathrm{2}{nd}\:{box}? \\ $$$$\left.{b}\right){if}\:\:{at}\:{most}\:\mathrm{7}\:{in}\:\mathrm{2}{nd}\:{box} \\ $$$${please}\:{sir}\:{Prof}.{Mr}.{W} \\ $$

Commented by mr W last updated on 03/Nov/22

2a)  say in one and only one box there are  exactly 5 balls.  to divide 12 balls into three boxes  there are following possibilities:  5+0+7 ✓ ⇒((12!)/(5!7!))×3!  5+1+6 ✓ ⇒((12!)/(5!6!))×3!  5+2+5 ×  5+3+4 ✓ ⇒((12!)/(5!3!4!))×3!  ⇒answer is       ((12!3!)/(5!))×((1/(7!))+(1/(6!))+(1/(3!4!)))=204 336

$$\left.\mathrm{2}{a}\right) \\ $$$${say}\:{in}\:{one}\:{and}\:{only}\:{one}\:{box}\:{there}\:{are} \\ $$$${exactly}\:\mathrm{5}\:{balls}. \\ $$$${to}\:{divide}\:\mathrm{12}\:{balls}\:{into}\:{three}\:{boxes} \\ $$$${there}\:{are}\:{following}\:{possibilities}: \\ $$$$\mathrm{5}+\mathrm{0}+\mathrm{7}\:\checkmark\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{5}!\mathrm{7}!}×\mathrm{3}! \\ $$$$\mathrm{5}+\mathrm{1}+\mathrm{6}\:\checkmark\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{5}!\mathrm{6}!}×\mathrm{3}! \\ $$$$\mathrm{5}+\mathrm{2}+\mathrm{5}\:× \\ $$$$\mathrm{5}+\mathrm{3}+\mathrm{4}\:\checkmark\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{5}!\mathrm{3}!\mathrm{4}!}×\mathrm{3}! \\ $$$$\Rightarrow{answer}\:{is}\: \\ $$$$\:\:\:\:\frac{\mathrm{12}!\mathrm{3}!}{\mathrm{5}!}×\left(\frac{\mathrm{1}}{\mathrm{7}!}+\frac{\mathrm{1}}{\mathrm{6}!}+\frac{\mathrm{1}}{\mathrm{3}!\mathrm{4}!}\right)=\mathrm{204}\:\mathrm{336} \\ $$

Commented by mr W last updated on 03/Nov/22

2b)  say in one box at least 5 balls:  12+0+0⇒1×((3!)/(2!))=3  11+1+0 ⇒((12!)/(11!))×3!=72  10+2+0 ⇒((12!)/(10!2!))×3!=396  10+1+1 ⇒((12!)/(10!2!))×3!=396  9+3+0 ⇒((12!)/(9!3!))×3!=1 320  9+2+1 ⇒((12!)/(9!2!))×3!=3 960  8+4+0 ⇒((12!)/(8!4!))×3!=2 970  8+3+1 ⇒((12!)/(8!3!))×3!=11 880  8+2+2  ⇒((12!)/(8!(2!)^2 2!))×3!=8 910  7+5+0 ⇒((12!)/(7!5!))×3!=4 752  7+4+1 ⇒((12!)/(7!4!))×3!=23 760  7+3+2 ⇒((12!)/(7!3!2!))×3!=47 520  6+6+0 ⇒((12!)/((6!)^2 2!))×3!=2 772  6+5+1 ⇒((12!)/(6!5!))×3!=33 264  6+4+2 ⇒((12!)/(6!4!2!))×3!=83 160  6+3+3 ⇒((12!)/(6!(3!)^2 2!))×3!=55 440  5+5+2 ⇒((12!)/((5!)^2 2!2!))×3!=49896  5+4+3 ⇒((12!)/(5!4!3!))×3!=166 320  totally:  496 791

$$\left.\mathrm{2}{b}\right) \\ $$$${say}\:{in}\:{one}\:{box}\:{at}\:{least}\:\mathrm{5}\:{balls}: \\ $$$$\mathrm{12}+\mathrm{0}+\mathrm{0}\Rightarrow\mathrm{1}×\frac{\mathrm{3}!}{\mathrm{2}!}=\mathrm{3} \\ $$$$\mathrm{11}+\mathrm{1}+\mathrm{0}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{11}!}×\mathrm{3}!=\mathrm{72} \\ $$$$\mathrm{10}+\mathrm{2}+\mathrm{0}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{10}!\mathrm{2}!}×\mathrm{3}!=\mathrm{396} \\ $$$$\mathrm{10}+\mathrm{1}+\mathrm{1}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{10}!\mathrm{2}!}×\mathrm{3}!=\mathrm{396} \\ $$$$\mathrm{9}+\mathrm{3}+\mathrm{0}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{9}!\mathrm{3}!}×\mathrm{3}!=\mathrm{1}\:\mathrm{320} \\ $$$$\mathrm{9}+\mathrm{2}+\mathrm{1}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{9}!\mathrm{2}!}×\mathrm{3}!=\mathrm{3}\:\mathrm{960} \\ $$$$\mathrm{8}+\mathrm{4}+\mathrm{0}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{8}!\mathrm{4}!}×\mathrm{3}!=\mathrm{2}\:\mathrm{970} \\ $$$$\mathrm{8}+\mathrm{3}+\mathrm{1}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{8}!\mathrm{3}!}×\mathrm{3}!=\mathrm{11}\:\mathrm{880} \\ $$$$\mathrm{8}+\mathrm{2}+\mathrm{2}\:\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{8}!\left(\mathrm{2}!\right)^{\mathrm{2}} \mathrm{2}!}×\mathrm{3}!=\mathrm{8}\:\mathrm{910} \\ $$$$\mathrm{7}+\mathrm{5}+\mathrm{0}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{7}!\mathrm{5}!}×\mathrm{3}!=\mathrm{4}\:\mathrm{752} \\ $$$$\mathrm{7}+\mathrm{4}+\mathrm{1}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{7}!\mathrm{4}!}×\mathrm{3}!=\mathrm{23}\:\mathrm{760} \\ $$$$\mathrm{7}+\mathrm{3}+\mathrm{2}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{7}!\mathrm{3}!\mathrm{2}!}×\mathrm{3}!=\mathrm{47}\:\mathrm{520} \\ $$$$\mathrm{6}+\mathrm{6}+\mathrm{0}\:\Rightarrow\frac{\mathrm{12}!}{\left(\mathrm{6}!\right)^{\mathrm{2}} \mathrm{2}!}×\mathrm{3}!=\mathrm{2}\:\mathrm{772} \\ $$$$\mathrm{6}+\mathrm{5}+\mathrm{1}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{6}!\mathrm{5}!}×\mathrm{3}!=\mathrm{33}\:\mathrm{264} \\ $$$$\mathrm{6}+\mathrm{4}+\mathrm{2}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{6}!\mathrm{4}!\mathrm{2}!}×\mathrm{3}!=\mathrm{83}\:\mathrm{160} \\ $$$$\mathrm{6}+\mathrm{3}+\mathrm{3}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{6}!\left(\mathrm{3}!\right)^{\mathrm{2}} \mathrm{2}!}×\mathrm{3}!=\mathrm{55}\:\mathrm{440} \\ $$$$\mathrm{5}+\mathrm{5}+\mathrm{2}\:\Rightarrow\frac{\mathrm{12}!}{\left(\mathrm{5}!\right)^{\mathrm{2}} \mathrm{2}!\mathrm{2}!}×\mathrm{3}!=\mathrm{49896} \\ $$$$\mathrm{5}+\mathrm{4}+\mathrm{3}\:\Rightarrow\frac{\mathrm{12}!}{\mathrm{5}!\mathrm{4}!\mathrm{3}!}×\mathrm{3}!=\mathrm{166}\:\mathrm{320} \\ $$$${totally}:\:\:\mathrm{496}\:\mathrm{791} \\ $$

Commented by SLVR last updated on 02/Nov/22

Now...i got the clarity..so  kind of sir..thanks a lot

$${Now}...{i}\:{got}\:{the}\:{clarity}..{so} \\ $$$${kind}\:{of}\:{sir}..{thanks}\:{a}\:{lot} \\ $$

Commented by mr W last updated on 03/Nov/22

generating functions are powerful  tools for solving such questions.  we don′t need to enumerate the  concrete combinations as i did above.  examples:  1)  coef. of term x^(12)  in  12!×(x^5 /(5!))×(e^x )^2   which is 101 376.

$${generating}\:{functions}\:{are}\:{powerful} \\ $$$${tools}\:{for}\:{solving}\:{such}\:{questions}. \\ $$$${we}\:{don}'{t}\:{need}\:{to}\:{enumerate}\:{the} \\ $$$${concrete}\:{combinations}\:{as}\:{i}\:{did}\:{above}. \\ $$$${examples}: \\ $$$$\left.\mathrm{1}\right) \\ $$$${coef}.\:{of}\:{term}\:{x}^{\mathrm{12}} \:{in} \\ $$$$\mathrm{12}!×\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}×\left({e}^{{x}} \right)^{\mathrm{2}} \\ $$$${which}\:{is}\:\mathrm{101}\:\mathrm{376}. \\ $$

Commented by mr W last updated on 03/Nov/22

Commented by mr W last updated on 03/Nov/22

2a)  coef. of term x^(12)  in  3×12!×(x^5 /(5!))×(e^x −(x^5 /(5!)))^2   which is 204 336.

$$\left.\mathrm{2}{a}\right) \\ $$$${coef}.\:{of}\:{term}\:{x}^{\mathrm{12}} \:{in} \\ $$$$\mathrm{3}×\mathrm{12}!×\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}×\left({e}^{{x}} −\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}\right)^{\mathrm{2}} \\ $$$${which}\:{is}\:\mathrm{204}\:\mathrm{336}. \\ $$

Commented by mr W last updated on 03/Nov/22

Commented by mr W last updated on 03/Nov/22

2b)  without restriction: 3^(12) =531 441 ways  all boxes have less than 5 balls, i.e.  each has 4 balls: ((12!)/((4!)^3 ))=34650 ways  one box has at least 5 balls:  ⇒531 441−34 650=496 791    or using generating functions:

$$\left.\mathrm{2}{b}\right) \\ $$$${without}\:{restriction}:\:\mathrm{3}^{\mathrm{12}} =\mathrm{531}\:\mathrm{441}\:{ways} \\ $$$${all}\:{boxes}\:{have}\:{less}\:{than}\:\mathrm{5}\:{balls},\:{i}.{e}. \\ $$$${each}\:{has}\:\mathrm{4}\:{balls}:\:\frac{\mathrm{12}!}{\left(\mathrm{4}!\right)^{\mathrm{3}} }=\mathrm{34650}\:{ways} \\ $$$${one}\:{box}\:{has}\:{at}\:{least}\:\mathrm{5}\:{balls}: \\ $$$$\Rightarrow\mathrm{531}\:\mathrm{441}−\mathrm{34}\:\mathrm{650}=\mathrm{496}\:\mathrm{791} \\ $$$$ \\ $$$${or}\:{using}\:{generating}\:{functions}: \\ $$

Commented by mr W last updated on 03/Nov/22

Commented by mr W last updated on 03/Nov/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com