1. (a, m)=(b, m)=1⇒(ab, m)=1
2. c∣ab and (c, a)=1⇒c∣b
3. If c is a common multiple of
a and b then [a, b]∣c
4. [ma, mb]=m[a, b] for all int m>0
5. [a, b](a, b)=∣ab∣
6. Let g>0, s be integers. Show
that g∣s iff ∃ integers x, y such
that s=x+y and (x, y)=g
|