Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 7

Question Number 159461    Answers: 0   Comments: 4

≺PRIME-BIRTHDAYS≻ Do you know ′Prime1611′?... No,no it′s not an ID of the forum- member.It is a person who was born on November 16, 0001.On his birthday astrologers formed a string from his birthdate in the way: ′ddmmyyyy′: ′16110001′ The astro- logers observed that number containing in the string: 16110001 is a prime number.Thus they gave him name ′Prime1611′ They also suggested that Mr Prime1611 should celebrate his birthday only when the number ddmmyyyy be prime number.Recently He celebrated his birthday on 16-11-2021 as the number 16112021 is prime. How many birthdays has he celebrated upto his recent birthday when he had celebrated his first birthday on 16-11-0001? You may use calculator also. Question connected with Q#159421

$$\:\:\:\:\:\:\:\:\:\:\prec\mathbb{PRIME}-\mathcal{BIRTHDAYS}\succ \\ $$$$\mathrm{Do}\:\mathrm{you}\:\mathrm{know}\:'\mathrm{Prime1611}'?... \\ $$$$\mathrm{No},\mathrm{no}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{an}\:\mathrm{ID}\:\mathrm{of}\:\mathrm{the}\:\mathrm{forum}- \\ $$$$\mathrm{member}.\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{person}\:\mathrm{who}\:\mathrm{was}\:\mathrm{born} \\ $$$$\mathrm{on}\:\mathrm{November}\:\mathrm{16},\:\mathrm{0001}.\mathrm{On}\:\mathrm{his} \\ $$$$\mathrm{birthday}\:\mathrm{astrologers}\:\mathrm{formed}\:\mathrm{a}\:\mathrm{string} \\ $$$$\mathrm{from}\:\mathrm{his}\:\mathrm{birthdate}\:\mathrm{in}\:\mathrm{the}\:\mathrm{way}: \\ $$$$'\mathrm{ddmmyyyy}':\:'\mathrm{16110001}'\:\mathrm{The}\:\mathrm{astro}- \\ $$$$\mathrm{logers}\:\mathrm{observed}\:\mathrm{that}\:\mathrm{number}\:\mathrm{containing} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{string}:\:\mathrm{16110001}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime} \\ $$$$\mathrm{number}.\mathrm{Thus}\:\mathrm{they}\:\mathrm{gave}\:\mathrm{him}\:\mathrm{name} \\ $$$$'\mathrm{Prime1611}'\:\mathrm{They}\:\mathrm{also}\:\mathrm{suggested}\:\mathrm{that} \\ $$$$\mathrm{Mr}\:\mathrm{Prime1611}\:\mathrm{should}\:\mathrm{celebrate}\:\mathrm{his} \\ $$$$\mathrm{birthday}\:\mathrm{only}\:\mathrm{when}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{ddmmyyyy}\:\mathrm{be}\:\mathrm{prime}\:\mathrm{number}.\mathrm{Recently} \\ $$$$\mathrm{He}\:\mathrm{celebrated}\:\mathrm{his}\:\mathrm{birthday}\:\mathrm{on} \\ $$$$\mathrm{16}-\mathrm{11}-\mathrm{2021}\:\mathrm{as}\:\mathrm{the}\:\mathrm{number}\:\mathrm{16112021} \\ $$$$\mathrm{is}\:\mathrm{prime}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{birthdays}\:\mathrm{has}\:\mathrm{he}\:\mathrm{celebrated} \\ $$$$\mathrm{upto}\:\mathrm{his}\:\mathrm{recent}\:\mathrm{birthday}\:\mathrm{when}\:\mathrm{he} \\ $$$$\mathrm{had}\:\mathrm{celebrated}\:\mathrm{his}\:\mathrm{first}\:\mathrm{birthday}\:\mathrm{on} \\ $$$$\mathrm{16}-\mathrm{11}-\mathrm{0001}? \\ $$$$\mathrm{You}\:\mathrm{may}\:\mathrm{use}\:\mathrm{calculator}\:\mathrm{also}. \\ $$$$\mathrm{Question}\:\mathrm{connected}\:\mathrm{with}\:\mathrm{Q}#\mathrm{159421} \\ $$

Question Number 158914    Answers: 0   Comments: 0

Σ_(n=0) ^∞ (1/((3n+1)^3 ))=?

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$

Question Number 158270    Answers: 0   Comments: 0

82,1336,18670,240004,2933338,34666672,400000006,? is there a valid pattern for these numbers?

$$\mathrm{82},\mathrm{1336},\mathrm{18670},\mathrm{240004},\mathrm{2933338},\mathrm{34666672},\mathrm{400000006},? \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{valid}\:\mathrm{pattern}\:\mathrm{for}\:\mathrm{these}\:\mathrm{numbers}? \\ $$

Question Number 157853    Answers: 0   Comments: 1

Question Number 157219    Answers: 0   Comments: 0

Σ_(0<n) (((−1)^(n−1) n)/(sinh(πn)))=(1/(4π)) prove

$$\underset{\mathrm{0}<\boldsymbol{\mathrm{n}}} {\sum}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{sinh}}\left(\pi\boldsymbol{\mathrm{n}}\right)}=\frac{\mathrm{1}}{\mathrm{4}\pi}\:\:\:\:{prove} \\ $$

Question Number 156419    Answers: 1   Comments: 1

x is positive integer number can you check if Q=((((x+2)^4 −x^4 ))^(1/3) is a natural number

$$\mathrm{x}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{number}\: \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{check}\:\mathrm{if}\:\mathrm{Q}=\sqrt[{\mathrm{3}}]{\left(\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} −\mathrm{x}^{\mathrm{4}} \right.} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number} \\ $$

Question Number 156126    Answers: 1   Comments: 1

cos(π/5)=...? with solution pls

$$\:\:\:\mathrm{cos}\frac{\pi}{\mathrm{5}}=...?\:\:\mathrm{with}\:\mathrm{solution}\:\mathrm{pls} \\ $$

Question Number 156201    Answers: 0   Comments: 1

A=[((x^n ((x^n^2 ((x^n^3 ∙∙∙∙(x^n^n )^(1/n) ))^(1/n) ))^(1/n) ))^(1/n) ]^(1/n)

$$\:\:{A}=\left[\sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}} \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{2}} } \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{3}} } \centerdot\centerdot\centerdot\centerdot\sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{n}} } }}}}\right]^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$

Question Number 155571    Answers: 2   Comments: 0

Find the cube root of one .Hence show that the sum of the root is equal to zero

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{one}\:.\mathrm{Hence} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root}\:\mathrm{is}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{zero} \\ $$

Question Number 155133    Answers: 2   Comments: 0

Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 ))=?

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$

Question Number 154672    Answers: 1   Comments: 0

how many positive x≤10 000 integers are such that 2^x −x^2 is divisible by 7?

$$\: \\ $$$$\:\mathrm{how}\:\mathrm{many}\:\mathrm{positive}\:{x}\leqslant\mathrm{10}\:\mathrm{000}\:\mathrm{integers}\:\mathrm{are}\:\: \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{2}^{{x}} −{x}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}? \\ $$$$\: \\ $$

Question Number 153916    Answers: 0   Comments: 0

The value of Σ_(n=0) ^∞ (((3_n )(2_n )x^n )/((1_n )n!)) β(2,n+1) is a. (1/2)Σ_(n=0) ^∞ (2_n )(x^n /(n!)) b. (1/2)Σ_(n=0) ^∞ (((3_n )(2_n ))/((1_n ))) (x^n /(n!)) c. (1/2)Σ_(n=0) ^∞ (((2_n )x^n )/((1_n )n!)) d. (1/3)Σ_(n=0) ^∞ (((3_n )x^n )/((1_n )n!))

$${The}\:{value}\:{of}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!}\:\beta\left(\mathrm{2},{n}+\mathrm{1}\right)\:{is} \\ $$$${a}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}_{{n}} \right)\frac{{x}^{{n}} }{{n}!} \\ $$$${b}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right)}{\left(\mathrm{1}_{{n}} \right)}\:\frac{{x}^{{n}} }{{n}!} \\ $$$${c}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$$${d}.\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$

Question Number 153458    Answers: 0   Comments: 1

Given a set consisting of 22 integer A={±a_1 ,±a_2 ,...,±a_(11) }. Show that exist subset of S with properties (1) for every i=1,2,3,...,11 have least one between a_i or −a_i element of S (2)the sum all possible numbers in S divisible by 2015

$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$

Question Number 151265    Answers: 1   Comments: 3

Question Number 150984    Answers: 0   Comments: 0

Question Number 150965    Answers: 1   Comments: 0

Question Number 150876    Answers: 0   Comments: 0

Question Number 150223    Answers: 2   Comments: 0

Question Number 149962    Answers: 0   Comments: 0

⌊x⌋+⌊y⌋=43.8 and x+y−⌊x⌋=18.4 .Find 100(x+y).

$$\:\lfloor{x}\rfloor+\lfloor{y}\rfloor=\mathrm{43}.\mathrm{8}\:{and}\:{x}+{y}−\lfloor{x}\rfloor=\mathrm{18}.\mathrm{4} \\ $$$$.{Find}\:\mathrm{100}\left({x}+{y}\right). \\ $$

Question Number 148951    Answers: 2   Comments: 0

Let complex number z=(a+cos θ)+(2a−sin θ)i . If ∣z∣ ≤2 for any θ∈R then the range of real number a is ___

$${Let}\:{complex}\:{number}\:{z}=\left({a}+\mathrm{cos}\:\theta\right)+\left(\mathrm{2}{a}−\mathrm{sin}\:\theta\right){i}\:. \\ $$$${If}\:\mid{z}\mid\:\leqslant\mathrm{2}\:{for}\:{any}\:\theta\in{R}\:{then}\:{the} \\ $$$${range}\:{of}\:{real}\:{number}\:{a}\:{is}\:\_\_\_ \\ $$

Question Number 148211    Answers: 1   Comments: 0

Question Number 145408    Answers: 0   Comments: 0

∫_0 ^x ⌊u⌋(⌊u⌋+1)f(u)du=Σ_(n=1) ^(⌊x⌋) n∫_n ^x f(u)du Prove that

$$\int_{\mathrm{0}} ^{{x}} \lfloor{u}\rfloor\left(\lfloor{u}\rfloor+\mathrm{1}\right){f}\left({u}\right){du}=\underset{{n}=\mathrm{1}} {\overset{\lfloor{x}\rfloor} {\sum}}{n}\int_{{n}} ^{{x}} {f}\left({u}\right){du}\:\: \\ $$$${Prove}\:{that} \\ $$

Question Number 145359    Answers: 1   Comments: 0

How many digits will there be in 875^(16) ?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{will}\:\mathrm{there}\:\mathrm{be} \\ $$$$\mathrm{in}\:\mathrm{875}^{\mathrm{16}} \:? \\ $$

Question Number 143790    Answers: 0   Comments: 2

Π_(n=1) ^∞ (1+(x^3 /n^3 ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{3}} }{{n}^{\mathrm{3}} }\right) \\ $$

Question Number 143085    Answers: 0   Comments: 0

φ(n^4 +1)=8n φ:Euler totient function Solve for n∈N

$$\phi\left({n}^{\mathrm{4}} +\mathrm{1}\right)=\mathrm{8}{n}\:\:\:\:\:\:\phi:{Euler}\:{totient}\:{function} \\ $$$${Solve}\:{for}\:{n}\in\mathbb{N} \\ $$

Question Number 142880    Answers: 1   Comments: 0

Prove that 𝛗(n)=nΠ_k (1−(1/p_k )) φ(n):Euler totient function

$$\:{Prove}\:{that}\:\boldsymbol{\phi}\left({n}\right)={n}\underset{{k}} {\prod}\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }\right)\:\:\phi\left({n}\right):{Euler}\:{totient}\:{function} \\ $$

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com