Question and Answers Forum
All Questions Topic List
Number TheoryQuestion and Answers: Page 6
Question Number 158270 Answers: 0 Comments: 0
$$\mathrm{82},\mathrm{1336},\mathrm{18670},\mathrm{240004},\mathrm{2933338},\mathrm{34666672},\mathrm{400000006},? \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{valid}\:\mathrm{pattern}\:\mathrm{for}\:\mathrm{these}\:\mathrm{numbers}? \\ $$
Question Number 157853 Answers: 0 Comments: 1
Question Number 157219 Answers: 0 Comments: 0
$$\underset{\mathrm{0}<\boldsymbol{\mathrm{n}}} {\sum}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{sinh}}\left(\pi\boldsymbol{\mathrm{n}}\right)}=\frac{\mathrm{1}}{\mathrm{4}\pi}\:\:\:\:{prove} \\ $$
Question Number 156419 Answers: 1 Comments: 1
$$\mathrm{x}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{number}\: \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{check}\:\mathrm{if}\:\mathrm{Q}=\sqrt[{\mathrm{3}}]{\left(\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} −\mathrm{x}^{\mathrm{4}} \right.} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number} \\ $$
Question Number 156126 Answers: 1 Comments: 1
$$\:\:\:\mathrm{cos}\frac{\pi}{\mathrm{5}}=...?\:\:\mathrm{with}\:\mathrm{solution}\:\mathrm{pls} \\ $$
Question Number 156201 Answers: 0 Comments: 1
$$\:\:{A}=\left[\sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}} \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{2}} } \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{3}} } \centerdot\centerdot\centerdot\centerdot\sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{n}} } }}}}\right]^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$
Question Number 155571 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{one}\:.\mathrm{Hence} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root}\:\mathrm{is}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{zero} \\ $$
Question Number 155133 Answers: 2 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$
Question Number 154672 Answers: 1 Comments: 0
$$\: \\ $$$$\:\mathrm{how}\:\mathrm{many}\:\mathrm{positive}\:{x}\leqslant\mathrm{10}\:\mathrm{000}\:\mathrm{integers}\:\mathrm{are}\:\: \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{2}^{{x}} −{x}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}? \\ $$$$\: \\ $$
Question Number 153916 Answers: 0 Comments: 0
$${The}\:{value}\:{of}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!}\:\beta\left(\mathrm{2},{n}+\mathrm{1}\right)\:{is} \\ $$$${a}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}_{{n}} \right)\frac{{x}^{{n}} }{{n}!} \\ $$$${b}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right)}{\left(\mathrm{1}_{{n}} \right)}\:\frac{{x}^{{n}} }{{n}!} \\ $$$${c}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$$${d}.\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$
Question Number 153458 Answers: 0 Comments: 1
$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$
Question Number 151265 Answers: 1 Comments: 3
Question Number 150984 Answers: 0 Comments: 0
Question Number 150965 Answers: 1 Comments: 0
Question Number 150876 Answers: 0 Comments: 0
Question Number 150223 Answers: 2 Comments: 0
Question Number 149962 Answers: 0 Comments: 0
$$\:\lfloor{x}\rfloor+\lfloor{y}\rfloor=\mathrm{43}.\mathrm{8}\:{and}\:{x}+{y}−\lfloor{x}\rfloor=\mathrm{18}.\mathrm{4} \\ $$$$.{Find}\:\mathrm{100}\left({x}+{y}\right). \\ $$
Question Number 148951 Answers: 2 Comments: 0
$${Let}\:{complex}\:{number}\:{z}=\left({a}+\mathrm{cos}\:\theta\right)+\left(\mathrm{2}{a}−\mathrm{sin}\:\theta\right){i}\:. \\ $$$${If}\:\mid{z}\mid\:\leqslant\mathrm{2}\:{for}\:{any}\:\theta\in{R}\:{then}\:{the} \\ $$$${range}\:{of}\:{real}\:{number}\:{a}\:{is}\:\_\_\_ \\ $$
Question Number 148211 Answers: 1 Comments: 0
Question Number 145408 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{{x}} \lfloor{u}\rfloor\left(\lfloor{u}\rfloor+\mathrm{1}\right){f}\left({u}\right){du}=\underset{{n}=\mathrm{1}} {\overset{\lfloor{x}\rfloor} {\sum}}{n}\int_{{n}} ^{{x}} {f}\left({u}\right){du}\:\: \\ $$$${Prove}\:{that} \\ $$
Question Number 145359 Answers: 1 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{will}\:\mathrm{there}\:\mathrm{be} \\ $$$$\mathrm{in}\:\mathrm{875}^{\mathrm{16}} \:? \\ $$
Question Number 143790 Answers: 0 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{3}} }{{n}^{\mathrm{3}} }\right) \\ $$
Question Number 143085 Answers: 0 Comments: 0
$$\phi\left({n}^{\mathrm{4}} +\mathrm{1}\right)=\mathrm{8}{n}\:\:\:\:\:\:\phi:{Euler}\:{totient}\:{function} \\ $$$${Solve}\:{for}\:{n}\in\mathbb{N} \\ $$
Question Number 142880 Answers: 1 Comments: 0
$$\:{Prove}\:{that}\:\boldsymbol{\phi}\left({n}\right)={n}\underset{{k}} {\prod}\left(\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }\right)\:\:\phi\left({n}\right):{Euler}\:{totient}\:{function} \\ $$
Question Number 142263 Answers: 0 Comments: 0
$$\begin{pmatrix}{\mathrm{0}\:{sin}\left({x}\right)}\\{\mathrm{0}\:\:\mathrm{0}}\end{pmatrix}!+\begin{pmatrix}{\mathrm{0}\:\:{sin}\left(\mathrm{2}{x}\right)}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}!+\begin{pmatrix}{\mathrm{0}\:\:\:{sin}\left(\mathrm{3}{x}\right)}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}!+...\:{n}^{{th}} \:{term} \\ $$
Question Number 141694 Answers: 0 Comments: 0
$${log}\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{10}}\mathrm{9}{e}^{\gamma} \right)=\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}}\left(\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} }{\mathrm{10}^{\mathrm{2}} }\right)−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}}\:\left(\frac{\mathrm{1}^{\mathrm{3}} +\mathrm{9}^{\mathrm{3}} }{\mathrm{10}^{\mathrm{3}} }\:\right)+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}}\left(\frac{\mathrm{1}^{\mathrm{4}} +\mathrm{9}^{\mathrm{4}} }{\mathrm{10}^{\mathrm{4}} }\right)−... \\ $$$$\gamma={Euler}\:{Mascheroni}\:{Constant} \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com