Question and Answers Forum
All Questions Topic List
Number TheoryQuestion and Answers: Page 6
Question Number 167056 Answers: 1 Comments: 0
$$\mathrm{help}\:\mathrm{me}!\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}cosec}^{−\mathrm{1}} \left(\mathrm{2}\right)\sqrt{{x}\sqrt{\mathrm{2}\sqrt{{x}}}} \\ $$
Question Number 166994 Answers: 2 Comments: 0
$$\mathrm{1}+\mathrm{1}\neq?? \\ $$
Question Number 166911 Answers: 1 Comments: 0
Question Number 166910 Answers: 1 Comments: 1
$${given}\:{that}\:{is}\:{prime},{proof}\:{that}\:\sqrt{{p}}\:{is}\: \\ $$$${irrational} \\ $$
Question Number 166881 Answers: 0 Comments: 0
Question Number 166602 Answers: 0 Comments: 0
$$\mathcal{D}{etermine}\:{condition}/{s}\:{that} \\ $$$${a}\:\boldsymbol{{number}}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{11} \\ $$$${is}\:{a}\:\boldsymbol{{palindrome}}-\boldsymbol{{number}}. \\ $$
Question Number 166601 Answers: 0 Comments: 0
$${What}\:{is}\:{the}\:{condition}\:{that}\: \\ $$$${a}\:\boldsymbol{{palindrome}}-\boldsymbol{{number}} \\ $$$$\:{is}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{11}? \\ $$
Question Number 166530 Answers: 1 Comments: 0
Question Number 166475 Answers: 2 Comments: 5
$$\mathcal{F}{ind}\:{out}\:{n}\in\mathbb{N} \\ $$$$\:{such}\:{that} \\ $$$${n}^{\mathrm{2}} +{n}\:{is}\:{divisible}\:{by}\:\mathrm{30}. \\ $$
Question Number 164940 Answers: 0 Comments: 1
$$−−−−−−−−− \\ $$$$\mathrm{1}!−\mathrm{2}!+\mathrm{3}!−\mathrm{4}!+\mathrm{5}!−\ldots−\mathrm{14}!+\mathrm{15}!=? \\ $$$$ \\ $$$$−−−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$
Question Number 164279 Answers: 3 Comments: 0
$${x}^{{n}} ={n}^{{x}} \:\:\:{x}=? \\ $$
Question Number 163763 Answers: 3 Comments: 1
$$ \\ $$
Question Number 163662 Answers: 1 Comments: 1
Question Number 163397 Answers: 0 Comments: 5
Question Number 163300 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\backsimeq\boldsymbol{{f}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{f}}\left(\mathrm{2}−\boldsymbol{{a}}\right) \\ $$$$ \\ $$For what values of a is the following formula accurate for polynomials of degree 3?
Question Number 163168 Answers: 2 Comments: 1
Question Number 162674 Answers: 2 Comments: 0
Question Number 162169 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\begin{array}{|c|}{\overset{\bullet} {\:\:\:\:\:\begin{array}{|c|}{\:\:\:\underset{{x}=?,{y}=?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {\overset{{x},{y}\in\mathbb{Z}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {{x}+{y}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{586}}}\:\:}\\\hline\end{array}_{} ^{} }\:\:\:\:}\\\hline\end{array} \\ $$$$ \\ $$
Question Number 161860 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Simplify} \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{to} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}^{\mathrm{2}} +\mathrm{n}−\mathrm{2} \\ $$
Question Number 161843 Answers: 0 Comments: 3
$${Q}#\mathrm{161744}\:{reposted}\:{with}\:{some}\:{change}. \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\boldsymbol{\mathrm{integer}}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\:+\:\frac{\mathrm{y}\:-\:\mathrm{5}}{\mathrm{5}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{x}}{\mathrm{y}\:+\:\mathrm{5}}\:+\:\frac{\mathrm{5}\:+\:\mathrm{y}}{\mathrm{5}\:+\:\mathrm{x}} \\ $$
Question Number 161622 Answers: 1 Comments: 0
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}+\mathrm{1}} }{\boldsymbol{{n}}\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)}=? \\ $$
Question Number 161528 Answers: 1 Comments: 0
$$\mathrm{PROVE}\:\mathrm{that}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{types} \\ $$$$\mathrm{4k}+\mathrm{2}\:\&\:\mathrm{4k}+\mathrm{3}\:\mathrm{are}\:\mathrm{NOT}\:\mathrm{perfect}\:\Box\mathrm{s}. \\ $$
Question Number 160270 Answers: 2 Comments: 0
Question Number 160061 Answers: 1 Comments: 0
$$ \\ $$$${Find}\:{out}\:{some}\:{pairs}\:\left({a},{b}\right)\:{such}\:{that} \\ $$$${for}\:{some}\:{n}\geqslant\mathrm{1} \\ $$$${a}^{{n}} +{b}^{{n}} ,{a}^{\mathrm{2}{n}} +{b}^{\mathrm{2}{n}} ,{a}^{\mathrm{4}{n}} +{b}^{\mathrm{4}{n}} ,{a}^{\mathrm{8}{n}} +{b}^{\mathrm{8}{n}} \in\mathbb{P} \\ $$$$ \\ $$
Question Number 159925 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{out}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{numbers}\:\left(\mathrm{a},\mathrm{b}\right)\:\left(\mathrm{as}\right. \\ $$$$\left.\mathrm{many}\:\mathrm{as}\:\mathrm{you}\:\mathrm{can}\right)\:\mathrm{such}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{a}}\:+\sqrt{\mathrm{b}}\:,\:\mathrm{a}+\mathrm{b}\:,\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \:\in\:\mathbb{P} \\ $$
Question Number 159775 Answers: 1 Comments: 0
$$\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\alpha^{\mathrm{3}} +\beta^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} }=\:? \\ $$$$\mathrm{in}\:\mathrm{expanded}\:\mathrm{form} \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com