Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 5

Question Number 166911    Answers: 1   Comments: 0

Question Number 166910    Answers: 1   Comments: 1

given that is prime,proof that (√p) is irrational

$${given}\:{that}\:{is}\:{prime},{proof}\:{that}\:\sqrt{{p}}\:{is}\: \\ $$$${irrational} \\ $$

Question Number 166881    Answers: 0   Comments: 0

Question Number 166602    Answers: 0   Comments: 0

Determine condition/s that a number divisible by 11 is a palindrome-number.

$$\mathcal{D}{etermine}\:{condition}/{s}\:{that} \\ $$$${a}\:\boldsymbol{{number}}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{11} \\ $$$${is}\:{a}\:\boldsymbol{{palindrome}}-\boldsymbol{{number}}. \\ $$

Question Number 166601    Answers: 0   Comments: 0

What is the condition that a palindrome-number is divisible by 11?

$${What}\:{is}\:{the}\:{condition}\:{that}\: \\ $$$${a}\:\boldsymbol{{palindrome}}-\boldsymbol{{number}} \\ $$$$\:{is}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{11}? \\ $$

Question Number 166530    Answers: 1   Comments: 0

Question Number 166475    Answers: 2   Comments: 5

Find out n∈N such that n^2 +n is divisible by 30.

$$\mathcal{F}{ind}\:{out}\:{n}\in\mathbb{N} \\ $$$$\:{such}\:{that} \\ $$$${n}^{\mathrm{2}} +{n}\:{is}\:{divisible}\:{by}\:\mathrm{30}. \\ $$

Question Number 164940    Answers: 0   Comments: 1

−−−−−−−−− 1!−2!+3!−4!+5!−…−14!+15!=? −−−−−−−−−−by M.A

$$−−−−−−−−− \\ $$$$\mathrm{1}!−\mathrm{2}!+\mathrm{3}!−\mathrm{4}!+\mathrm{5}!−\ldots−\mathrm{14}!+\mathrm{15}!=? \\ $$$$ \\ $$$$−−−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$

Question Number 164279    Answers: 3   Comments: 0

x^n =n^x x=?

$${x}^{{n}} ={n}^{{x}} \:\:\:{x}=? \\ $$

Question Number 163763    Answers: 3   Comments: 1

$$ \\ $$

Question Number 163662    Answers: 1   Comments: 1

Question Number 163397    Answers: 0   Comments: 5

Question Number 163300    Answers: 1   Comments: 0

∫_0 ^2 f(x)dx⋍f(a)+f(2−a) For what values ​​of a is the following formula accurate for polynomials of degree 3?

$$\int_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\backsimeq\boldsymbol{{f}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{f}}\left(\mathrm{2}−\boldsymbol{{a}}\right) \\ $$$$ \\ $$For what values ​​of a is the following formula accurate for polynomials of degree 3?

Question Number 163168    Answers: 2   Comments: 1

Question Number 162674    Answers: 2   Comments: 0

Question Number 162169    Answers: 2   Comments: 0

determinant ((( determinant ((( x+y+x^2 y^2 =586_(x=?,y=? ) ^(x,y∈Z ) )))_ ^ _() ^(•) )))

$$ \\ $$$$\:\:\:\:\:\:\:\begin{array}{|c|}{\overset{\bullet} {\:\:\:\:\:\begin{array}{|c|}{\:\:\:\underset{{x}=?,{y}=?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {\overset{{x},{y}\in\mathbb{Z}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {{x}+{y}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{586}}}\:\:}\\\hline\end{array}_{} ^{} }\:\:\:\:}\\\hline\end{array} \\ $$$$ \\ $$

Question Number 161860    Answers: 1   Comments: 0

Simplify ((1^2 ∙2!+2^2 ∙3!+3^2 ∙4!+∙∙∙+n^2 (n+1)!−2)/((n+1)!)) to n^2 +n−2

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Simplify} \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{to} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}^{\mathrm{2}} +\mathrm{n}−\mathrm{2} \\ $$

Question Number 161843    Answers: 0   Comments: 3

Q#161744 reposted with some change. Solve for integer numbers: (x/y) + (5/x) + ((y - 5)/5) = ((y + x)/(y + 5)) + ((5 + y)/(5 + x))

$${Q}#\mathrm{161744}\:{reposted}\:{with}\:{some}\:{change}. \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\boldsymbol{\mathrm{integer}}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\:+\:\frac{\mathrm{y}\:-\:\mathrm{5}}{\mathrm{5}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{x}}{\mathrm{y}\:+\:\mathrm{5}}\:+\:\frac{\mathrm{5}\:+\:\mathrm{y}}{\mathrm{5}\:+\:\mathrm{x}} \\ $$

Question Number 161622    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (((−1)^(n+1) )/(n(2n+1)))=?

$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}+\mathrm{1}} }{\boldsymbol{{n}}\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)}=? \\ $$

Question Number 161528    Answers: 1   Comments: 0

PROVE that the numbers of types 4k+2 & 4k+3 are NOT perfect □s.

$$\mathrm{PROVE}\:\mathrm{that}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{types} \\ $$$$\mathrm{4k}+\mathrm{2}\:\&\:\mathrm{4k}+\mathrm{3}\:\mathrm{are}\:\mathrm{NOT}\:\mathrm{perfect}\:\Box\mathrm{s}. \\ $$

Question Number 160270    Answers: 2   Comments: 0

Question Number 160061    Answers: 1   Comments: 0

Find out some pairs (a,b) such that for some n≥1 a^n +b^n ,a^(2n) +b^(2n) ,a^(4n) +b^(4n) ,a^(8n) +b^(8n) ∈P

$$ \\ $$$${Find}\:{out}\:{some}\:{pairs}\:\left({a},{b}\right)\:{such}\:{that} \\ $$$${for}\:{some}\:{n}\geqslant\mathrm{1} \\ $$$${a}^{{n}} +{b}^{{n}} ,{a}^{\mathrm{2}{n}} +{b}^{\mathrm{2}{n}} ,{a}^{\mathrm{4}{n}} +{b}^{\mathrm{4}{n}} ,{a}^{\mathrm{8}{n}} +{b}^{\mathrm{8}{n}} \in\mathbb{P} \\ $$$$ \\ $$

Question Number 159925    Answers: 1   Comments: 0

Find out pairs of numbers (a,b) (as many as you can) such that: (√a) +(√b) , a+b , a^2 +b^2 ∈ P

$$\mathrm{Find}\:\mathrm{out}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{numbers}\:\left(\mathrm{a},\mathrm{b}\right)\:\left(\mathrm{as}\right. \\ $$$$\left.\mathrm{many}\:\mathrm{as}\:\mathrm{you}\:\mathrm{can}\right)\:\mathrm{such}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{a}}\:+\sqrt{\mathrm{b}}\:,\:\mathrm{a}+\mathrm{b}\:,\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \:\in\:\mathbb{P} \\ $$

Question Number 159775    Answers: 1   Comments: 0

Π_(n=1) ^∞ ((α^3 +β^2 )/3^n )= ? in expanded form

$$\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\alpha^{\mathrm{3}} +\beta^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} }=\:? \\ $$$$\mathrm{in}\:\mathrm{expanded}\:\mathrm{form} \\ $$

Question Number 159461    Answers: 0   Comments: 4

≺PRIME-BIRTHDAYS≻ Do you know ′Prime1611′?... No,no it′s not an ID of the forum- member.It is a person who was born on November 16, 0001.On his birthday astrologers formed a string from his birthdate in the way: ′ddmmyyyy′: ′16110001′ The astro- logers observed that number containing in the string: 16110001 is a prime number.Thus they gave him name ′Prime1611′ They also suggested that Mr Prime1611 should celebrate his birthday only when the number ddmmyyyy be prime number.Recently He celebrated his birthday on 16-11-2021 as the number 16112021 is prime. How many birthdays has he celebrated upto his recent birthday when he had celebrated his first birthday on 16-11-0001? You may use calculator also. Question connected with Q#159421

$$\:\:\:\:\:\:\:\:\:\:\prec\mathbb{PRIME}-\mathcal{BIRTHDAYS}\succ \\ $$$$\mathrm{Do}\:\mathrm{you}\:\mathrm{know}\:'\mathrm{Prime1611}'?... \\ $$$$\mathrm{No},\mathrm{no}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{an}\:\mathrm{ID}\:\mathrm{of}\:\mathrm{the}\:\mathrm{forum}- \\ $$$$\mathrm{member}.\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{person}\:\mathrm{who}\:\mathrm{was}\:\mathrm{born} \\ $$$$\mathrm{on}\:\mathrm{November}\:\mathrm{16},\:\mathrm{0001}.\mathrm{On}\:\mathrm{his} \\ $$$$\mathrm{birthday}\:\mathrm{astrologers}\:\mathrm{formed}\:\mathrm{a}\:\mathrm{string} \\ $$$$\mathrm{from}\:\mathrm{his}\:\mathrm{birthdate}\:\mathrm{in}\:\mathrm{the}\:\mathrm{way}: \\ $$$$'\mathrm{ddmmyyyy}':\:'\mathrm{16110001}'\:\mathrm{The}\:\mathrm{astro}- \\ $$$$\mathrm{logers}\:\mathrm{observed}\:\mathrm{that}\:\mathrm{number}\:\mathrm{containing} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{string}:\:\mathrm{16110001}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime} \\ $$$$\mathrm{number}.\mathrm{Thus}\:\mathrm{they}\:\mathrm{gave}\:\mathrm{him}\:\mathrm{name} \\ $$$$'\mathrm{Prime1611}'\:\mathrm{They}\:\mathrm{also}\:\mathrm{suggested}\:\mathrm{that} \\ $$$$\mathrm{Mr}\:\mathrm{Prime1611}\:\mathrm{should}\:\mathrm{celebrate}\:\mathrm{his} \\ $$$$\mathrm{birthday}\:\mathrm{only}\:\mathrm{when}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{ddmmyyyy}\:\mathrm{be}\:\mathrm{prime}\:\mathrm{number}.\mathrm{Recently} \\ $$$$\mathrm{He}\:\mathrm{celebrated}\:\mathrm{his}\:\mathrm{birthday}\:\mathrm{on} \\ $$$$\mathrm{16}-\mathrm{11}-\mathrm{2021}\:\mathrm{as}\:\mathrm{the}\:\mathrm{number}\:\mathrm{16112021} \\ $$$$\mathrm{is}\:\mathrm{prime}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{birthdays}\:\mathrm{has}\:\mathrm{he}\:\mathrm{celebrated} \\ $$$$\mathrm{upto}\:\mathrm{his}\:\mathrm{recent}\:\mathrm{birthday}\:\mathrm{when}\:\mathrm{he} \\ $$$$\mathrm{had}\:\mathrm{celebrated}\:\mathrm{his}\:\mathrm{first}\:\mathrm{birthday}\:\mathrm{on} \\ $$$$\mathrm{16}-\mathrm{11}-\mathrm{0001}? \\ $$$$\mathrm{You}\:\mathrm{may}\:\mathrm{use}\:\mathrm{calculator}\:\mathrm{also}. \\ $$$$\mathrm{Question}\:\mathrm{connected}\:\mathrm{with}\:\mathrm{Q}#\mathrm{159421} \\ $$

Question Number 158914    Answers: 0   Comments: 0

Σ_(n=0) ^∞ (1/((3n+1)^3 ))=?

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com