Question and Answers Forum
All Questions Topic List
Number TheoryQuestion and Answers: Page 3
Question Number 192909 Answers: 0 Comments: 0
$$\: \\ $$$$\:{let}\:{P}\left({x}\right)\:{is}\:{polinomial}\:{with}\:{integer} \\ $$$$\:{coefficient}\:{s}.{t}\:{P}\left(\mathrm{6}\right){P}\left(\mathrm{38}\right){P}\left(\mathrm{57}\right)+\mathrm{19}\:{is} \\ $$$$\:{divided}\:{by}\:\mathrm{114}.\:{P}\left(-\mathrm{13}\right)=\mathrm{479}\:{and}\:{P}\geqslant\mathrm{0} \\ $$$$\:{what}\:{is}\:{minimum}\:{value}\:{of}\:{P}\left(\mathrm{0}\right)? \\ $$$$ \\ $$
Question Number 191889 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{k}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2n}}\:=? \\ $$
Question Number 191862 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{from}\: \\ $$$$\:\left(\mathrm{2}^{\mathrm{400}} −\mathrm{2}^{\mathrm{320}} \right)\left(\mathrm{2}^{\mathrm{200}} +\mathrm{2}^{\mathrm{160}} \right)\left(\mathrm{2}^{\mathrm{200}} −\mathrm{2}^{\mathrm{160}} \right) \\ $$
Question Number 191846 Answers: 1 Comments: 0
$${find}\:{the}\:{last}\:{three}\:{digits} \\ $$$${of}\:\mathrm{4}^{\mathrm{2}^{\mathrm{42}} } \\ $$$${Mohammed}\:{Alwan} \\ $$
Question Number 191710 Answers: 0 Comments: 1
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{f}\:\mathrm{149}!\:\mathrm{when}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{139}? \\ $$
Question Number 191680 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{of}\:\mathrm{67}!\:\mathrm{when}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{7}! \\ $$
Question Number 191232 Answers: 1 Comments: 0
$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:\mathrm{2023}^{\mathrm{2023}} \:\mathrm{then}\:\mathrm{how}\:\mathrm{many}\: \\ $$$$\mathrm{pair}\:\mathrm{of}\:{x},{y}\:{where}\:{x},\:{y}\:\in\:\mathrm{N} \\ $$
Question Number 190568 Answers: 0 Comments: 1
Question Number 190569 Answers: 1 Comments: 0
$$\:\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{4}−\mathrm{digit}\: \\ $$$$\:\mathrm{numbers}\:\mathrm{that}\:\mathrm{contain}\:\mathrm{the} \\ $$$$\:\mathrm{number}\:\mathrm{6}\:\mathrm{and}\:\mathrm{are}\:\mathrm{divisible}\: \\ $$$$\:\mathrm{by}\:\mathrm{3}\:\mathrm{is}\:\_\_\_ \\ $$
Question Number 190544 Answers: 1 Comments: 1
$$\mathrm{Given}\:\mathrm{p},\mathrm{q},\mathrm{r},\mathrm{s}\:\mathrm{sre}\:\mathrm{distinc}\:\mathrm{prime}\:\mathrm{numbers} \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{pq}−\mathrm{rs}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{30}. \\ $$$$\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}\:=? \\ $$
Question Number 190286 Answers: 1 Comments: 0
Question Number 190285 Answers: 1 Comments: 5
Question Number 189090 Answers: 2 Comments: 0
Question Number 188196 Answers: 3 Comments: 2
$$\left(\mathrm{1}\right)\mathrm{solve}\:\mathrm{Diopthantine}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\mathrm{754x}+\mathrm{221y}=\mathrm{13} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{abcd}\: \\ $$$$\:\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{4}×\left(\mathrm{abcd}\right)=\mathrm{dcba} \\ $$
Question Number 187300 Answers: 0 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integral}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\left({p}+{q}\right)\left({q}+{r}\right)\left({r}+{p}\right)=\mathrm{8}{pqr}+\mathrm{2} \\ $$
Question Number 187296 Answers: 0 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{4},\:\mathrm{S}_{{n}} =\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{{k}!} \:\mathrm{is}\:\mathrm{never}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{cube}. \\ $$
Question Number 187213 Answers: 0 Comments: 0
$$\mathrm{If}\:{a},{b}\:\mathrm{are}\:\mathrm{co}-\mathrm{prime}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{satisfying} \\ $$$${a}^{\mathrm{2}} \:+\:{b}\:=\:\left({a}−{b}\right)^{\mathrm{3}} \:\mathrm{and}\:{b}+\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{find}\:\mathrm{all} \\ $$$$\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\left({a},\:{b}\right). \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{this}. \\ $$$$ \\ $$
Question Number 183998 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\boldsymbol{\mathrm{n}}\:{such} \\ $$$$\:\:\:\:\:\:\:{n}=\mathrm{7}^{{a}} \centerdot\mathrm{17}^{{b}} \:\:\:\:\:\:{a}\in\mathbb{N},\:\:\:{b}\in\mathbb{N} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{its}\:\mathrm{divisors}\:\left(\mathrm{1}\:\mathrm{and}\right. \\ $$$$\left.\boldsymbol{\mathrm{n}}\:\mathrm{included}\right)\:\mathrm{is}\:\mathrm{2456}. \\ $$
Question Number 183678 Answers: 0 Comments: 0
$${find}\:{the}\:{laplace}\:{invesrse}\:{for}\:{I}\left({s}\right) \\ $$$${I}\left({s}\right)=\frac{\mathrm{2000}{s}^{\mathrm{2}} }{\left({s}^{\mathrm{2}} +\mathrm{200}^{\mathrm{2}} \right)\left({s}^{\mathrm{2}} +\mathrm{400}{s}+\mathrm{2}×\mathrm{10}^{\mathrm{5}} \right)} \\ $$
Question Number 182199 Answers: 2 Comments: 0
$${Let}\:{S}=\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6},\:\mathrm{7}\right\} \\ $$$${If}\:{we}\:{multiply}\:{atleast}\:\mathrm{2}\:{numbers} \\ $$$${from}\:{this}\:{set}\:{with}\:{each}\:{other},\:{what} \\ $$$${are}\:{the}\:{chances}\:{of}\:{the}\:{product}\:{to} \\ $$$${turn}\:{out}\:{to}\:{be}\:{divisible}\:{by}\:\mathrm{3}? \\ $$
Question Number 182374 Answers: 2 Comments: 1
Question Number 181313 Answers: 2 Comments: 0
$${Montrer}\:{que} \\ $$$$\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} \:\:\:{est}\:{divisible}\:{par}\:\mathrm{7} \\ $$
Question Number 180877 Answers: 1 Comments: 1
$$\boldsymbol{\mathrm{Q}}.\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{largest}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}}\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}}\:>\:\mathrm{1}\:\boldsymbol{\mathrm{satisfy}}. \\ $$$$\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} .\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:+\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} \:+\:\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:=\:\mathrm{5329} \\ $$
Question Number 180776 Answers: 2 Comments: 0
$${Simplify}\:\:\sqrt{\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}}\:+\:\mathrm{3}}\: \\ $$$$ \\ $$
Question Number 180746 Answers: 2 Comments: 0
Question Number 180115 Answers: 1 Comments: 0
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com