Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 20

Question Number 21031    Answers: 0   Comments: 0

if :∀ε>0, ∀(a,b)∈R^2 ,a<b+ε prove: a≤b

$${if}\::\forall\epsilon>\mathrm{0},\:\forall\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,{a}<{b}+\epsilon \\ $$$${prove}:\:{a}\leqslant{b} \\ $$

Question Number 19631    Answers: 1   Comments: 0

Two different prime numbers between 4 and 18 are chosen. When their sum is subtracted from their product then a number x is obtained which is a multiple of 17. Find the sum of digits of number x.

$$\mathrm{Two}\:\mathrm{different}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{between} \\ $$$$\mathrm{4}\:\mathrm{and}\:\mathrm{18}\:\mathrm{are}\:\mathrm{chosen}.\:\mathrm{When}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is} \\ $$$$\mathrm{subtracted}\:\mathrm{from}\:\mathrm{their}\:\mathrm{product}\:\mathrm{then}\:\mathrm{a} \\ $$$$\mathrm{number}\:{x}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{which}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{multiple}\:\mathrm{of}\:\mathrm{17}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{digits}\:\mathrm{of} \\ $$$$\mathrm{number}\:{x}. \\ $$

Question Number 19389    Answers: 1   Comments: 0

What is the digital root of 3^(2017)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{digital}\:\mathrm{root}\:\mathrm{of}\:\:\mathrm{3}^{\mathrm{2017}} \\ $$

Question Number 19239    Answers: 1   Comments: 0

Assume that a, b, c and d are positive integers such that a^5 = b^4 , c^3 = d^2 and c − a = 19. Determine d − b.

$$\mathrm{Assume}\:\mathrm{that}\:{a},\:{b},\:{c}\:\mathrm{and}\:{d}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{integers}\:\mathrm{such}\:\mathrm{that}\:{a}^{\mathrm{5}} \:=\:{b}^{\mathrm{4}} ,\:{c}^{\mathrm{3}} \:=\:{d}^{\mathrm{2}} \:\mathrm{and} \\ $$$${c}\:−\:{a}\:=\:\mathrm{19}.\:\mathrm{Determine}\:{d}\:−\:{b}. \\ $$

Question Number 19193    Answers: 1   Comments: 0

The sum of two positive integers is 52 and their LCM is 168. Find the numbers.

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{is}\:\mathrm{52} \\ $$$$\mathrm{and}\:\mathrm{their}\:\mathrm{LCM}\:\mathrm{is}\:\mathrm{168}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{numbers}. \\ $$

Question Number 19192    Answers: 0   Comments: 2

Find a natural number ′n′ such that 3^9 + 3^(12) + 3^(15) + 3^n is a perfect cube of an integer.

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{natural}\:\mathrm{number}\:'\mathrm{n}'\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{3}^{\mathrm{9}} \:+\:\mathrm{3}^{\mathrm{12}} \:+\:\mathrm{3}^{\mathrm{15}} \:+\:\mathrm{3}^{{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{cube}\:\mathrm{of} \\ $$$$\mathrm{an}\:\mathrm{integer}. \\ $$

Question Number 19002    Answers: 1   Comments: 0

what is the maximum number of time three divides 333^(505)

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number}\:\mathrm{of}\:\:\mathrm{time}\:\mathrm{three}\:\mathrm{divides}\:\mathrm{333}^{\mathrm{505}} \\ $$

Question Number 18949    Answers: 1   Comments: 1

Find the number of numbers ≤ 10^8 which are neither perfect squares, nor perfect cubes, nor perfect fifth powers.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{numbers}\:\leqslant\:\mathrm{10}^{\mathrm{8}} \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{neither}\:\mathrm{perfect}\:\mathrm{squares},\:\mathrm{nor} \\ $$$$\mathrm{perfect}\:\mathrm{cubes},\:\mathrm{nor}\:\mathrm{perfect}\:\mathrm{fifth}\:\mathrm{powers}. \\ $$

Question Number 18884    Answers: 1   Comments: 0

Determine the smallest positive integer x, whose last digit is 6 and if we erase this 6 and put it in left most of the number so obtained, the number becomes 4x.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\mathrm{x},\:\mathrm{whose}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{6}\:\mathrm{and}\:\mathrm{if}\:\mathrm{we}\:\mathrm{erase} \\ $$$$\mathrm{this}\:\mathrm{6}\:\mathrm{and}\:\mathrm{put}\:\mathrm{it}\:\mathrm{in}\:\mathrm{left}\:\mathrm{most}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{so}\:\mathrm{obtained},\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{becomes}\:\mathrm{4x}. \\ $$

Question Number 18655    Answers: 0   Comments: 3

Find the number of odd integers between 30,000 and 80,000 in which no digit is repeated.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{integers} \\ $$$$\mathrm{between}\:\mathrm{30},\mathrm{000}\:\mathrm{and}\:\mathrm{80},\mathrm{000}\:\mathrm{in}\:\mathrm{which}\:\mathrm{no} \\ $$$$\mathrm{digit}\:\mathrm{is}\:\mathrm{repeated}. \\ $$

Question Number 18652    Answers: 1   Comments: 0

Show that for any natural number n, the fraction ((21n + 4)/(14n + 3)) is in its lowest term.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{natural}\:\mathrm{number}\:{n}, \\ $$$$\mathrm{the}\:\mathrm{fraction}\:\frac{\mathrm{21}{n}\:+\:\mathrm{4}}{\mathrm{14}{n}\:+\:\mathrm{3}}\:\mathrm{is}\:\mathrm{in}\:\mathrm{its}\:\mathrm{lowest}\:\mathrm{term}. \\ $$

Question Number 18498    Answers: 5   Comments: 1

How many times is digit 0 written when listing all numbers from 1 to 3333?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{times}\:\mathrm{is}\:\mathrm{digit}\:\mathrm{0}\:\mathrm{written}\:\mathrm{when} \\ $$$$\mathrm{listing}\:\mathrm{all}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{3333}? \\ $$

Question Number 18135    Answers: 0   Comments: 6

Let x be the LCM of 3^(2002) − 1 and 3^(2002) + 1. Find the last digit of x.

$$\mathrm{Let}\:{x}\:\mathrm{be}\:\mathrm{the}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} \:−\:\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{3}^{\mathrm{2002}} \:+\:\mathrm{1}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:{x}. \\ $$

Question Number 17446    Answers: 0   Comments: 2

Find the integer closest to 100(12 − (√(143))).

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{closest}\:\mathrm{to} \\ $$$$\mathrm{100}\left(\mathrm{12}\:−\:\sqrt{\mathrm{143}}\right). \\ $$

Question Number 17303    Answers: 0   Comments: 0

What are next three numbers in the following sequence: 4,6,12,18,30,42,60,...

$$\mathrm{What}\:\mathrm{are}\:\mathrm{next}\:\mathrm{three}\:\mathrm{numbers} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sequence}: \\ $$$$\mathrm{4},\mathrm{6},\mathrm{12},\mathrm{18},\mathrm{30},\mathrm{42},\mathrm{60},... \\ $$

Question Number 17272    Answers: 0   Comments: 5

Determine two distinct primes p and q such that: (i) p+q+1,p+q−1,((p+q)/2) ∈ P (All primes)? (ii) p+q+1,p+q−1,((p+q)/2),((p−q)/2) ∈ P (All primes)?

$$\mathrm{Determine}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{primes}\:\:\:\mathrm{p}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\: \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}},\frac{\mathrm{p}−\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$

Question Number 17252    Answers: 0   Comments: 2

The sum of the digits of the number 2^(2000) 5^(2004) is Will it be 13 or 14?

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{2}^{\mathrm{2000}} \mathrm{5}^{\mathrm{2004}} \:\mathrm{is} \\ $$$$\mathrm{Will}\:\mathrm{it}\:\mathrm{be}\:\mathrm{13}\:\mathrm{or}\:\mathrm{14}? \\ $$

Question Number 17142    Answers: 0   Comments: 2

Find two primes a and b such that a−b=995

$$\mathrm{Find}\:\mathrm{two}\:\mathrm{primes}\:{a}\:\mathrm{and}\:{b}\:\mathrm{such} \\ $$$$\mathrm{that}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{a}−{b}=\mathrm{995} \\ $$

Question Number 16880    Answers: 0   Comments: 0

Find the number of positive integers less than or equal to 300 that are multiples of 3 or 5, but are not multiples of 10 or 15.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{less}\:\mathrm{than}\:\mathrm{or}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{300}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{multiples}\:\mathrm{of}\:\mathrm{3}\:\mathrm{or}\:\mathrm{5},\:\mathrm{but}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{multiples}\:\mathrm{of}\:\mathrm{10}\:\mathrm{or}\:\mathrm{15}. \\ $$

Question Number 15891    Answers: 0   Comments: 0

Find out last odd digit in the expansion of 1000!

$$\mathrm{Find}\:\mathrm{out}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{odd}}\:\boldsymbol{\mathrm{digit}}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\mathrm{1000}! \\ $$

Question Number 15889    Answers: 0   Comments: 0

Find out first non-five digit from right in the expansion of (1×3×5×...×625).

$$\mathrm{Find}\:\mathrm{out}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{non}}-\boldsymbol{\mathrm{five}}\:\boldsymbol{\mathrm{digit}}\:\mathrm{from}\:\mathrm{right} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}×\mathrm{3}×\mathrm{5}×...×\mathrm{625}\right). \\ $$

Question Number 15835    Answers: 0   Comments: 1

Number of decimal digits in 50! is

$$\:\mathrm{Number}\:\mathrm{of}\: \\ $$$$\mathrm{decimal}\:\:\mathrm{digits}\: \\ $$$$\mathrm{in}\:\:\mathrm{50}!\:\mathrm{is} \\ $$

Question Number 15789    Answers: 0   Comments: 0

Prove that: 2^(2^(2n + 1) ) + 2^2^(2n) + 1 , is never a prime for any positive n.

$$\mathrm{Prove}\:\mathrm{that}:\:\:\mathrm{2}^{\mathrm{2}^{\mathrm{2n}\:+\:\mathrm{1}} \:} +\:\mathrm{2}^{\mathrm{2}^{\mathrm{2n}} } \:+\:\mathrm{1}\:,\:\:\mathrm{is}\:\mathrm{never}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{n}. \\ $$

Question Number 15788    Answers: 0   Comments: 2

Find all rational solution of the equation a + b = ab

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{rational}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{ab} \\ $$

Question Number 15787    Answers: 0   Comments: 2

Find the four digits number such that 4 ∙ abcd = dcba

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{four}\:\mathrm{digits}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{4}\:\centerdot\:\mathrm{abcd}\:=\:\mathrm{dcba} \\ $$

Question Number 15742    Answers: 1   Comments: 1

This question is posted on the request of mrW1 (See comments of my answer to Q#15543). Find the last last non-zero digit of the expansion of 2000!

$$\mathrm{This}\:\mathrm{question}\:\mathrm{is}\:\mathrm{posted}\:\mathrm{on}\:\mathrm{the}\:\mathrm{request}\:\mathrm{of}\:\mathrm{mrW1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{See}\:\mathrm{comments}\:\mathrm{of}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{Q}#\mathrm{15543}\right). \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{last}\:\:\boldsymbol{\mathrm{non}}-\boldsymbol{\mathrm{zero}}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\:\mathrm{2000}! \\ $$

  Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com