Question and Answers Forum
All Questions Topic List
Number TheoryQuestion and Answers: Page 2
Question Number 203509 Answers: 0 Comments: 0
$${Find}\:{the}\:{value}\:{of}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{2}^{{n}} +\mathrm{1}}{\mathrm{2}^{{n}} −\mathrm{1}} \\ $$
Question Number 203146 Answers: 1 Comments: 0
$$\mathcal{D}{etermine}\:\overline {{ab}}\:\left({a}>{b}\right)\:{such}\:{that}\left(\:\overline {{ab}}+\overline {{ba}}\right)\: \\ $$$${and}\:\left(\overline {{ab}}−\overline {{ba}}\right)\:{are}\:{both}\:{perfect}\:{squares}. \\ $$
Question Number 202716 Answers: 1 Comments: 0
$$\overline {\:\:{abcd}\:\:}{is}\:{a}\:{four}\:{digit}\:{number} \\ $$$${such}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\overline {\:{cd}\:} \\ $$$${and}\:\overline {\:{cd}\:}−\overline {\:{d}\:}=\overline {\:{ab}\:}. \\ $$$$\mathcal{F}{ind}\:{the}\:{number}. \\ $$
Question Number 201418 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\mathrm{2025}^{\mathrm{2025}} \:=\:\mathrm{x}\:\left(\mathrm{mod}\:\mathrm{17}\:\right) \\ $$
Question Number 201352 Answers: 3 Comments: 0
$$\:\:\:\mathrm{2023}^{\mathrm{2023}} \:=\:...\:\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$
Question Number 200836 Answers: 1 Comments: 4
$$ \\ $$$$\mathcal{L}{et}\overline {\:{abc}\:}+\overline {\:{bca}\:}+\overline {\:{cab}\:}=\overline {\:{defg}\:} \\ $$$${where}\:{a},{b},...,{g}\:{are}\:{decimal}\:{digits} \\ $$$$\left({may}\:{be}\:{equal}\:{to}\:\mathrm{0}\right)\: \\ $$$${Show}\:{that} \\ $$$$\left({i}\right)\overline {\:{dg}\:}={a}+{b}+{c} \\ $$$$\left({ii}\right)\:{e}={f}={d}+{g} \\ $$
Question Number 200834 Answers: 1 Comments: 0
$${Show}\:{that}\:\:\:\overline {\:\:{abc}\:}+\overline {\:{bca}\:}+\overline {\:{cab}\:} \\ $$$${is}\:{divisible}\:{by}\:\mathrm{37} \\ $$
Question Number 200315 Answers: 0 Comments: 3
$$\:\begin{cases}{\overline {\:{ab}\:}\centerdot\overline {\:{b}\:}+\overline {\:{ba}\:}\centerdot\overline {\:{a}\:}=\overline {\:{cde}\:}}\\{\overline {\:{ab}\:}\centerdot\overline {\:{b}\:}−\overline {\:{ba}\:}\centerdot\overline {\:{a}\:}=\overline {\:{f}\:}\:}\end{cases} \\ $$$${a},{b},{c},{d},{e},{f}\:{are}\:{all}\:{different}\:{and}\:{in} \\ $$$${some}\:{order}\:{consecutive}\:{also}. \\ $$$$\: \\ $$$$\mathcal{D}{etermine}\:{the}\:{remaining}\:{decimal} \\ $$$${digits}. \\ $$
Question Number 200200 Answers: 1 Comments: 0
$${Find}\:{four}\:{positive}\:{integers}, \\ $$$$\:{each}\:{not}\:{exceeding}\:\mathrm{70000}\:{and}\: \\ $$$${each}\:{having}\:{more}\:{than}\:\mathrm{100} \\ $$$$\:{divisors}. \\ $$
Question Number 200041 Answers: 3 Comments: 0
$${By}\:{strong}\:{induction}\:{prove}\:{that}\:{any} \\ $$$${natural}\:{number}\:{equal}\:{to}\:{or}\:{bigger}\:{than} \\ $$$$\mathrm{8}\:{can}\:{be}\:{written}\:{as}\:\mathrm{3}{a}+\mathrm{5}{b}\:{where}\:{a}\:{and}\:{b} \\ $$$${are}\:{non}−{negative}\:{integers}. \\ $$
Question Number 199864 Answers: 1 Comments: 0
$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}\mathrm{n}^{\mathrm{4}} \:\mathrm{when} \\ $$$$\:\:\mathrm{divide}\:\mathrm{by}\:\mathrm{53}\: \\ $$
Question Number 199331 Answers: 0 Comments: 0
$${What}\:{is}\:{the}\:{remainder}\:{when} \\ $$$$\mathrm{1}^{\mathrm{1}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +......+\mathrm{2023}^{\mathrm{2023}} \:{is}\:{divided}\:{by}\:\mathrm{7} \\ $$
Question Number 199311 Answers: 2 Comments: 0
$${Find}\:{the}\:{number}\:{of}\:{positive}\:{integers} \\ $$$${that}\:{are}\:{factors}\:{of}\:\mathrm{3}^{\mathrm{19}} .\mathrm{7}^{\mathrm{12}} .\mathrm{10}^{\mathrm{25}} \:{and}\:{are} \\ $$$${also}\:{multiples}\:{of}\:\mathrm{3}^{\mathrm{15}} .\mathrm{7}^{\mathrm{10}} .\mathrm{10}^{\mathrm{19}} \\ $$
Question Number 199011 Answers: 1 Comments: 1
$${Sum}\:{of}\:{two}\:{irrational}\:{numbers}\:{is}\:\mathrm{1} \\ $$$${less}\:{than}\:{their}\:{product},\:{and}\:\mathrm{8}\:{less}\:{than} \\ $$$${their}\:{sum}\:{of}\:{squares}.\:{Find}\:{the}\:{larger} \\ $$$${of}\:{the}\:{two}\:{numbers}. \\ $$
Question Number 198684 Answers: 3 Comments: 0
$$\:\cancel{\zeta} \\ $$
Question Number 198418 Answers: 1 Comments: 0
$$\:\mathrm{20}^{\mathrm{22}} −\mathrm{1}\:=\:...\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$ \\ $$
Question Number 198400 Answers: 3 Comments: 0
$$\:\:\mathrm{20}^{\mathrm{11}} −\mathrm{1}\:=\:...\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$
Question Number 197752 Answers: 1 Comments: 0
$$\:\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{m} \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{m}^{\mathrm{19}} =\:\mathrm{1800}\:\left(\mathrm{mod}\:\mathrm{2029}\right) \\ $$
Question Number 197461 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\bullet\underset{\:\mathrm{0}} {\int}^{\:\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}\mathrm{dt}=\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{arctan}\left(\mathrm{xtan}\theta\right)\mathrm{d}\theta \\ $$$$\bullet\:\:\underset{\:\frac{\mathrm{1}}{\mathrm{x}}} {\int}^{\:\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}\mathrm{arctant}\:\mathrm{dt}=\frac{\pi}{\mathrm{8}}\underset{\:\mathrm{0}} {\int}^{\:\pi} \mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{sint}\right)\mathrm{dt} \\ $$
Question Number 196672 Answers: 1 Comments: 1
$${Find}\:{all}\:\Omega\overline {={abcdef}\:\:},\:{such}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{abcdef}={abc}+{def} \\ $$
Question Number 196676 Answers: 1 Comments: 1
$${If}\:\overline {{ab}}\:\centerdot\:\overline {{cd}}=\mathrm{899}\:,\:{find}\:\Omega=\:\overline {{abcd}}\:+\:\overline {{cdab}} \\ $$
Question Number 196053 Answers: 1 Comments: 0
$${faind}\:{n}\:{terme} \\ $$$$\mathrm{4},−\mathrm{2},\frac{\mathrm{16}}{\mathrm{9}},−\mathrm{2},...... \\ $$
Question Number 195443 Answers: 2 Comments: 0
$$\mathrm{10}^{\mathrm{10}} +\mathrm{10}^{\mathrm{10}^{\mathrm{2}} } +\mathrm{10}^{\mathrm{10}^{\mathrm{3}} } +...+\mathrm{10}^{\mathrm{10}^{\mathrm{10}} } \:\:\overset{\mathrm{7}} {\equiv}\:\:? \\ $$
Question Number 194689 Answers: 1 Comments: 0
Question Number 193485 Answers: 2 Comments: 0
$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:\mathrm{2}^{\boldsymbol{\mathrm{n}}} −\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{divisible}}\:\boldsymbol{\mathrm{by}} \\ $$$$\:\:\:\:\:\:\:\mathrm{3}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}}\:\boldsymbol{\mathrm{n}}. \\ $$
Question Number 193286 Answers: 1 Comments: 2
$$\mathrm{Let}\:'\mathrm{P}'\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:\left(\mathrm{P}\:>\:\mathrm{1000}\right). \\ $$$$\mathrm{If}\:\:'\mathrm{P}'\:\mathrm{devided}\:\mathrm{by}\:\mathrm{1000},\:\mathrm{then}\:\mathrm{remainder}\:\mathrm{is}\:'\mathrm{r}'. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{r}'\:? \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com