Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 1

Question Number 213756    Answers: 1   Comments: 0

Question Number 213663    Answers: 1   Comments: 0

Given a,b,c is natural numbers such that (a−b)(b−c)(c−a)=a+b+c. find min value of a+b+c

$$\:\:\mathrm{Given}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{is}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{c}−\mathrm{a}\right)=\mathrm{a}+\mathrm{b}+\mathrm{c}. \\ $$$$\:\:\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}+\mathrm{b}+\mathrm{c}\: \\ $$

Question Number 212999    Answers: 1   Comments: 0

Find the number of non zero integer solution (x,y) to the equation ((15)/(x^2 y)) + (3/(xy)) − (2/x) = 2

$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{integer}\: \\ $$$$\:\mathrm{solution}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\frac{\mathrm{15}}{\mathrm{x}^{\mathrm{2}} \mathrm{y}}\:+\:\frac{\mathrm{3}}{\mathrm{xy}}\:−\:\frac{\mathrm{2}}{\mathrm{x}}\:=\:\mathrm{2}\: \\ $$

Question Number 212242    Answers: 0   Comments: 7

Help

$$\mathrm{Help} \\ $$

Question Number 212201    Answers: 1   Comments: 0

find the last two digits of 9^9^9 ?

$$\:\:\:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{9}^{\mathrm{9}^{\mathrm{9}} } \:? \\ $$

Question Number 211943    Answers: 2   Comments: 1

2^(m−1) =1+mn m, n ∈Z

$$\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{1}+{mn} \\ $$$${m},\:{n}\:\in\mathbb{Z} \\ $$

Question Number 211635    Answers: 1   Comments: 0

Question Number 211595    Answers: 1   Comments: 0

Question Number 211456    Answers: 2   Comments: 0

Question Number 211455    Answers: 2   Comments: 0

Question Number 211454    Answers: 2   Comments: 0

Question Number 211453    Answers: 1   Comments: 0

Question Number 211445    Answers: 1   Comments: 0

Question Number 211443    Answers: 1   Comments: 0

Question Number 208506    Answers: 2   Comments: 0

What is the smallest number which must added to 9454351626 so that it will become divisible by 11?

What is the smallest number which must added to 9454351626 so that it will become divisible by 11?

Question Number 207713    Answers: 2   Comments: 0

Question Number 207436    Answers: 1   Comments: 2

a, b∈N_+ , ((b+1)/a)+((a+1)/b)∈Z. Prove that (a, b)≤(√(a+b.))

$${a},\:{b}\in\mathbb{N}_{+} ,\:\frac{{b}+\mathrm{1}}{{a}}+\frac{{a}+\mathrm{1}}{{b}}\in\mathbb{Z}.\:\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\left({a},\:{b}\right)\leqslant\sqrt{{a}+{b}.} \\ $$

Question Number 207423    Answers: 2   Comments: 0

$$\:\:\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 207060    Answers: 2   Comments: 0

$$\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 207021    Answers: 1   Comments: 1

If a_(n+1) =2−5a_n and a_4 = −8 prove that a_(43) −a_(30) divisible by 5

$$\:\:{If}\:\:{a}_{{n}+\mathrm{1}} =\mathrm{2}−\mathrm{5}{a}_{{n}} \:{and}\:{a}_{\mathrm{4}} =\:−\mathrm{8} \\ $$$$\:\:{prove}\:{that}\:{a}_{\mathrm{43}} −{a}_{\mathrm{30}} \:{divisible}\:{by}\:\mathrm{5} \\ $$

Question Number 206999    Answers: 3   Comments: 1

Prove that 6^(20) −1 = 0 (mod 7)

$$\:\:\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{6}^{\mathrm{20}} −\mathrm{1}\:=\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$

Question Number 206912    Answers: 3   Comments: 0

Question Number 205922    Answers: 2   Comments: 0

x = 2 (mod 7) x=3 (mod 4) x=?

$$\:\:\:{x}\:=\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:{x}=\mathrm{3}\:\left({mod}\:\mathrm{4}\right) \\ $$$$\:\:\:{x}=? \\ $$

Question Number 204568    Answers: 1   Comments: 0

how to convert 31230 in base 60? pls help

$$\boldsymbol{{how}}\:\boldsymbol{{to}}\:\boldsymbol{{convert}}\:\mathrm{31230}\:\boldsymbol{{in}}\:\boldsymbol{{base}}\:\mathrm{60}? \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{help}} \\ $$

Question Number 203509    Answers: 0   Comments: 0

Find the value of: Π_(n=1) ^∞ ((2^n +1)/(2^n −1))

$${Find}\:{the}\:{value}\:{of}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{2}^{{n}} +\mathrm{1}}{\mathrm{2}^{{n}} −\mathrm{1}} \\ $$

Question Number 203146    Answers: 1   Comments: 0

Determine ab^(−) (a>b) such that( ab^(−) +ba^(−) ) and (ab^(−) −ba^(−) ) are both perfect squares.

$$\mathcal{D}{etermine}\:\overline {{ab}}\:\left({a}>{b}\right)\:{such}\:{that}\left(\:\overline {{ab}}+\overline {{ba}}\right)\: \\ $$$${and}\:\left(\overline {{ab}}−\overline {{ba}}\right)\:{are}\:{both}\:{perfect}\:{squares}. \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com