Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 104419 by Anindita last updated on 21/Jul/20

Now the sum of your father and your is  90 years. 5 years ago your father′s age  was 3 times than your age. Write the  your age and your father′s age 3 years  after.

$$\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{father}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{is}} \\ $$$$\mathrm{90}\:\boldsymbol{\mathrm{years}}.\:\mathrm{5}\:\boldsymbol{\mathrm{years}}\:\boldsymbol{\mathrm{ago}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{father}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{age}} \\ $$$$\boldsymbol{\mathrm{was}}\:\mathrm{3}\:\boldsymbol{\mathrm{times}}\:\boldsymbol{\mathrm{than}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{age}}.\:\boldsymbol{\mathrm{Write}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{age}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{father}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{age}}\:\mathrm{3}\:\boldsymbol{\mathrm{years}} \\ $$$$\boldsymbol{\mathrm{after}}. \\ $$

Answered by 1549442205PVT last updated on 22/Jul/20

Call x,y be your age and your father 3 years after  respectively.From the hypothesis we  have  { ((x+y−6=90)),((((y−8)/(x−8))=3)) :} ⇔ { ((x+y=96)),((3x−y=16)) :}  ⇔ { ((x+y=96)),((4x=112)) :} ⇔ { ((x=28)),((y=68)) :}  Hence,now you are 25 year− olds and your  father is 65 year−olds

$$\mathrm{Call}\:\mathrm{x},\mathrm{y}\:\mathrm{be}\:\mathrm{your}\:\mathrm{age}\:\mathrm{and}\:\mathrm{your}\:\mathrm{father}\:\mathrm{3}\:\mathrm{years}\:\mathrm{after} \\ $$$$\mathrm{respectively}.\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{we} \\ $$$$\mathrm{have}\:\begin{cases}{\mathrm{x}+\mathrm{y}−\mathrm{6}=\mathrm{90}}\\{\frac{\mathrm{y}−\mathrm{8}}{\mathrm{x}−\mathrm{8}}=\mathrm{3}}\end{cases}\:\Leftrightarrow\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{96}}\\{\mathrm{3x}−\mathrm{y}=\mathrm{16}}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{96}}\\{\mathrm{4x}=\mathrm{112}}\end{cases}\:\Leftrightarrow\begin{cases}{\mathrm{x}=\mathrm{28}}\\{\mathrm{y}=\mathrm{68}}\end{cases} \\ $$$$\boldsymbol{\mathrm{Hence}},\boldsymbol{\mathrm{now}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{are}}\:\mathrm{25}\:\boldsymbol{\mathrm{year}}−\:\boldsymbol{\mathrm{olds}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{your}} \\ $$$$\boldsymbol{\mathrm{father}}\:\boldsymbol{\mathrm{is}}\:\mathrm{65}\:\boldsymbol{\mathrm{year}}−\boldsymbol{\mathrm{olds}} \\ $$

Commented by Rasheed.Sindhi last updated on 22/Jul/20

x+y−6^(???) =90

$$\mathrm{x}+\mathrm{y}\overset{???} {−\mathrm{6}}=\mathrm{90} \\ $$

Commented by 1549442205PVT last updated on 23/Jul/20

it is (x−3)+(y−3)=90 sir!thank you

$$\mathrm{it}\:\mathrm{is}\:\left(\mathrm{x}−\mathrm{3}\right)+\left(\mathrm{y}−\mathrm{3}\right)=\mathrm{90}\:\mathrm{sir}!\mathrm{thank}\:\mathrm{you} \\ $$

Answered by Rasheed.Sindhi last updated on 23/Jul/20

   Using one variable   determinant ((,(your age),,(father′s age)),((−−−−),(−−−−),−,(−−−−−)),((Now),(       x),,(      90−x)),((5_(years) ago),(    x−5),,(      85−x)),((−−−−),(−−−−),−,(−−−−−)),(,(  3(x−5)),=,(85−x)),((Equation),(             4x),=,(85+15)),(,(                x),=,(25)),(,(      90−x),=,(65)),((−−−−),(−−−−),−,(−−−−−)),((Result),(         25),,(        65)))     After 3 years:  your age=25+3=28 years  your father′s age 65+3=68  years

$$\:\:\:\mathrm{Using}\:\mathrm{one}\:\mathrm{variable} \\ $$$$\begin{vmatrix}{}&{{your}\:{age}}&{}&{{father}'{s}\:{age}}\\{−−−−}&{−−−−}&{−}&{−−−−−}\\{{Now}}&{\:\:\:\:\:\:\:{x}}&{}&{\:\:\:\:\:\:\mathrm{90}−{x}}\\{\mathrm{5}_{{years}} {ago}}&{\:\:\:\:{x}−\mathrm{5}}&{}&{\:\:\:\:\:\:\mathrm{85}−{x}}\\{−−−−}&{−−−−}&{−}&{−−−−−}\\{}&{\:\:\mathrm{3}\left({x}−\mathrm{5}\right)}&{=}&{\mathrm{85}−{x}}\\{\mathcal{E}{quation}}&{\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{x}}&{=}&{\mathrm{85}+\mathrm{15}}\\{}&{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}}&{=}&{\mathrm{25}}\\{}&{\:\:\:\:\:\:\mathrm{90}−{x}}&{=}&{\mathrm{65}}\\{−−−−}&{−−−−}&{−}&{−−−−−}\\{{Result}}&{\:\:\:\:\:\:\:\:\:\mathrm{25}}&{}&{\:\:\:\:\:\:\:\:\mathrm{65}}\end{vmatrix}\:\:\: \\ $$$${After}\:\mathrm{3}\:{years}: \\ $$$${your}\:{age}=\mathrm{25}+\mathrm{3}=\mathrm{28}\:{years} \\ $$$${your}\:{father}'{s}\:{age}\:\mathrm{65}+\mathrm{3}=\mathrm{68} \\ $$$${years} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com