Previous in Probability and Statistics Next in Probability and Statistics | ||
Question Number 131975 by liberty last updated on 10/Feb/21 | ||
$$\:\mathrm{Ninety}\:\mathrm{students}\:,\:\mathrm{including}\:\mathrm{Joe} \\ $$$$\mathrm{and}\:\mathrm{Jane}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{split}\:\mathrm{into}\: \\ $$$$\mathrm{three}\:\mathrm{classes}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{size}\:\mathrm{and}\:\mathrm{is} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{done}\:\mathrm{at}\:\mathrm{random}.\:\mathrm{What}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{Joe}\:\mathrm{and}\:\mathrm{Jane} \\ $$$$\mathrm{end}\:\mathrm{up}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same}\:\mathrm{class}\:? \\ $$ | ||
Commented by liberty last updated on 10/Feb/21 | ||
$$\mathrm{i}\:\mathrm{got}\:\mathrm{n}\left(\mathrm{S}\right)=\:\frac{\mathrm{90}!}{\mathrm{30}!.\mathrm{30}!.\mathrm{30}!} \\ $$$$\mathrm{n}\left(\mathrm{A}\right)=\mathrm{3}×\mathrm{C}_{\mathrm{28}} ^{\mathrm{88}} ×\mathrm{C}_{\mathrm{30}} ^{\mathrm{60}} ×\mathrm{C}_{\mathrm{30}} ^{\mathrm{30}} =\mathrm{3}×\frac{\mathrm{88}!}{\mathrm{28}!.\mathrm{60}!}×\frac{\mathrm{60}!}{\mathrm{30}!.\mathrm{30}!} \\ $$$$\mathrm{P}\left(\mathrm{A}\right)=\:\frac{\mathrm{3}×\frac{\mathrm{88}!}{\mathrm{28}!.}×\mathrm{30}!}{\mathrm{90}!}=\frac{\mathrm{3}×\mathrm{30}×\mathrm{29}}{\mathrm{90}×\mathrm{89}} \\ $$$$\:\:\:\:=\:\frac{\mathrm{29}}{\mathrm{89}} \\ $$$$ \\ $$ | ||
Commented by liberty last updated on 10/Feb/21 | ||
$$\mathrm{hahaha}...\mathrm{i}'\mathrm{m}\:\mathrm{misread}\:\mathrm{the}\:\mathrm{question} \\ $$ | ||
Answered by TheSupreme last updated on 10/Feb/21 | ||
$${Joe}\:{is}\:{in}\:{the}\:{class}\:{x} \\ $$$${P}\left({Jane}\in{x}\right)=\frac{\mathrm{30}−\mathrm{1}}{\mathrm{90}−\mathrm{1}}=\frac{\mathrm{29}}{\mathrm{89}} \\ $$$$ \\ $$ | ||
Commented by liberty last updated on 10/Feb/21 | ||
$$\mathrm{haha}\:\mathrm{its}\:\mathrm{general}\:\mathrm{formula} \\ $$ | ||