Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5315 by FilupSmith last updated on 07/May/16

My mother is making a game for children  that involves words on cards.  e.g. card one hase words a and b,  for whatever a and b might be.    She has a list of 20 words and she wants cards  that are′t duplicate. That is, a b and b a  are duplicates.    My question is, the total number of cards  is equal to ^(20) C_2  , correct?

$$\mathrm{My}\:\mathrm{mother}\:\mathrm{is}\:\mathrm{making}\:\mathrm{a}\:\mathrm{game}\:\mathrm{for}\:\mathrm{children} \\ $$$$\mathrm{that}\:\mathrm{involves}\:\mathrm{words}\:\mathrm{on}\:\mathrm{cards}. \\ $$$$\mathrm{e}.\mathrm{g}.\:\mathrm{card}\:\mathrm{one}\:\mathrm{hase}\:\mathrm{words}\:{a}\:\mathrm{and}\:{b}, \\ $$$$\mathrm{for}\:\mathrm{whatever}\:{a}\:\mathrm{and}\:{b}\:\mathrm{might}\:\mathrm{be}. \\ $$$$ \\ $$$$\mathrm{She}\:\mathrm{has}\:\mathrm{a}\:\mathrm{list}\:\mathrm{of}\:\mathrm{20}\:\mathrm{words}\:\mathrm{and}\:\mathrm{she}\:\mathrm{wants}\:\mathrm{cards} \\ $$$$\mathrm{that}\:\mathrm{are}'\mathrm{t}\:\mathrm{duplicate}.\:\mathrm{That}\:\mathrm{is},\:{a}\:{b}\:\mathrm{and}\:{b}\:{a} \\ $$$$\mathrm{are}\:\mathrm{duplicates}. \\ $$$$ \\ $$$$\mathrm{My}\:\mathrm{question}\:\mathrm{is},\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{cards} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\:^{\mathrm{20}} {C}_{\mathrm{2}} \:,\:\mathrm{correct}? \\ $$

Commented by Yozzii last updated on 07/May/16

No duplication means order does not  matter. So, combinations are required.  Two different words from a list of  20 words (assumed different) are   given per card. Thus, ((20)/2)=10 cards (cards being defined by hard paper only) are  needed. To the first card that you use, you have  (((20)),(2) )   choices for yielding the first card.  2 words are removed by this action  so that the second card you use gets  (((18)),(2) ) word choices.  2 more words are lost. To the third  card you use⇒ (((16)),(2) ) choices or  (((16)),(2) )   possible cards result. Continuing on,  you eventually have just 2 words left  for card ten in  ((2),(2) )=1 way.  By this card generation method, at random, there  are exactly Π_(i=1) ^(10)  (((22−2i)),(2) ) ways.

$${No}\:{duplication}\:{means}\:{order}\:{does}\:{not} \\ $$$${matter}.\:{So},\:{combinations}\:{are}\:{required}. \\ $$$${Two}\:{different}\:{words}\:{from}\:{a}\:{list}\:{of} \\ $$$$\mathrm{20}\:{words}\:\left({assumed}\:{different}\right)\:{are}\: \\ $$$${given}\:{per}\:{card}.\:{Thus},\:\frac{\mathrm{20}}{\mathrm{2}}=\mathrm{10}\:{cards}\:\left({cards}\:{being}\:{defined}\:{by}\:{hard}\:{paper}\:{only}\right)\:{are} \\ $$$${needed}.\:{To}\:{the}\:{first}\:{card}\:{that}\:{you}\:{use},\:{you}\:{have}\:\begin{pmatrix}{\mathrm{20}}\\{\mathrm{2}}\end{pmatrix}\: \\ $$$${choices}\:{for}\:{yielding}\:{the}\:{first}\:{card}. \\ $$$$\mathrm{2}\:{words}\:{are}\:{removed}\:{by}\:{this}\:{action} \\ $$$${so}\:{that}\:{the}\:{second}\:{card}\:{you}\:{use}\:{gets}\:\begin{pmatrix}{\mathrm{18}}\\{\mathrm{2}}\end{pmatrix}\:{word}\:{choices}. \\ $$$$\mathrm{2}\:{more}\:{words}\:{are}\:{lost}.\:{To}\:{the}\:{third} \\ $$$${card}\:{you}\:{use}\Rightarrow\begin{pmatrix}{\mathrm{16}}\\{\mathrm{2}}\end{pmatrix}\:{choices}\:{or}\:\begin{pmatrix}{\mathrm{16}}\\{\mathrm{2}}\end{pmatrix}\: \\ $$$${possible}\:{cards}\:{result}.\:{Continuing}\:{on}, \\ $$$${you}\:{eventually}\:{have}\:{just}\:\mathrm{2}\:{words}\:{left} \\ $$$${for}\:{card}\:{ten}\:{in}\:\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}=\mathrm{1}\:{way}. \\ $$$${By}\:{this}\:{card}\:{generation}\:{method},\:{at}\:{random},\:{there} \\ $$$${are}\:{exactly}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{10}} {\prod}}\begin{pmatrix}{\mathrm{22}−\mathrm{2}{i}}\\{\mathrm{2}}\end{pmatrix}\:{ways}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com