Question and Answers Forum

All Questions   Topic List

Moderm PhysicsQuestion and Answers: Page 1

Question Number 220454    Answers: 0   Comments: 0

In the CO_2 molecule, each oxygen atom forms a double bond with central carbon atom. Given that the Bohr radius (a_o ) is approximately 0.529 A^o and the experimental C=O bond length is about 1.16 A^(o ) , calculate : a) The approximate region (in the terms of Bohr radii) where the shared electrons are most likely to be found between C and O. b) Compare the calculated bond region to the sum of the covalent radii of carbon and oxygen, and comment on the effect of π bonding on the contraction of bond length.

$$\:\mathrm{In}\:\mathrm{the}\:{CO}_{\mathrm{2}} \:\mathrm{molecule},\:\mathrm{each}\:\mathrm{oxygen}\:\mathrm{atom}\:\mathrm{forms}\:\mathrm{a}\:\mathrm{double}\:\mathrm{bond}\:\mathrm{with}\:\mathrm{central}\:\mathrm{carbon}\:\mathrm{atom}. \\ $$$$\:\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{Bohr}\:\mathrm{radius}\:\left({a}_{{o}} \right)\:\mathrm{is}\:\mathrm{approximately}\:\mathrm{0}.\mathrm{529}\:\overset{\mathrm{o}} {\mathrm{A}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{experimental}\:{C}={O}\: \\ $$$$\:\:\mathrm{bond}\:\mathrm{length}\:\mathrm{is}\:\mathrm{about}\:\mathrm{1}.\mathrm{16}\:\overset{\mathrm{o}\:} {\mathrm{A}},\:\mathrm{calculate}\:: \\ $$$$\: \\ $$$$\left.\:\mathrm{a}\right)\:\mathrm{The}\:\mathrm{approximate}\:\mathrm{region}\:\left(\mathrm{in}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{Bohr}\:\mathrm{radii}\right)\:\mathrm{where}\:\mathrm{the}\:\mathrm{shared}\:\mathrm{electrons}\:\mathrm{are} \\ $$$$\:\mathrm{most}\:\mathrm{likely}\:\mathrm{to}\:\mathrm{be}\:\mathrm{found}\:\mathrm{between}\:{C}\:\mathrm{and}\:{O}. \\ $$$$\left.\:\mathrm{b}\right)\:\mathrm{Compare}\:\mathrm{the}\:\mathrm{calculated}\:\mathrm{bond}\:\mathrm{region}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{covalent}\:\mathrm{radii}\:\mathrm{of}\:\mathrm{carbon}\:\mathrm{and} \\ $$$$\:\mathrm{oxygen},\:\mathrm{and}\:\mathrm{comment}\:\mathrm{on}\:\mathrm{the}\:\mathrm{effect}\:\mathrm{of}\:\pi\:\mathrm{bonding}\:\mathrm{on}\:\mathrm{the}\:\mathrm{contraction}\:\mathrm{of}\:\mathrm{bond}\:\mathrm{length}. \\ $$

Question Number 217589    Answers: 1   Comments: 0

Question Number 217588    Answers: 0   Comments: 0

Question Number 201502    Answers: 0   Comments: 3

A generation is about one-third of a lifetime.Approximately about how many generations have passed since the year 0AD?

$${A}\:{generation}\:{is}\:{about}\:{one}-{third}\:{of}\:{a} \\ $$$${lifetime}.{Approximately}\:{about}\:{how} \\ $$$${many}\:{generations}\:{have}\:{passed}\:{since} \\ $$$${the}\:{year}\:\mathrm{0}{AD}? \\ $$

Question Number 192257    Answers: 0   Comments: 3

A bullet with a velocity of 30 ms^(−1) after pentrating a 6 cm whole tree the velocity is reduced by one−third and then the bullet travels for 1s more. Will the bullet penetratee th tree? Analyze mathematically.

$$ \\ $$$$\mathrm{A}\:\mathrm{bullet}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{30}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{after} \\ $$$$\mathrm{pentrating}\:\mathrm{a}\:\mathrm{6}\:{cm}\:\mathrm{whole}\:\mathrm{tree}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{is}\: \\ $$$$\mathrm{reduced}\:\mathrm{by}\:\mathrm{one}−\mathrm{third}\:\mathrm{and}\:\mathrm{then}\:\mathrm{the}\:\mathrm{bullet} \\ $$$$\mathrm{travel}{s}\:\mathrm{for}\:\mathrm{1s}\:\mathrm{more}.\: \\ $$$$ \\ $$$$ \\ $$$${Will}\:\mathrm{the}\:\mathrm{bullet}\:\mathrm{penetratee} \\ $$$$\mathrm{th}\:\mathrm{tree}?\:\mathrm{Analyze}\:\mathrm{mathematically}. \\ $$

Question Number 192248    Answers: 0   Comments: 1

Question Number 189932    Answers: 0   Comments: 0

Question Number 181253    Answers: 0   Comments: 5

define microscopic and macroscopic with one one example.

$${define}\:{microscopic}\:{and}\:{macroscopic} \\ $$$${with}\:{one}\:{one}\:{example}. \\ $$

Question Number 169972    Answers: 0   Comments: 0

Question Number 168164    Answers: 0   Comments: 1

Find the total energy (in Joules) of a particle of mass 4.0×10^(−11) kg moving at 80% the speed of light.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{energy}\:\left({in}\:{Joules}\right) \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}.\mathrm{0}×\mathrm{10}^{−\mathrm{11}} \mathrm{kg} \\ $$$$\mathrm{moving}\:\mathrm{at}\:\mathrm{80\%}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{light}. \\ $$

Question Number 163988    Answers: 0   Comments: 1

if here are 20 apple in a box, how many are the significant figures in it?

$${if}\:{here}\:{are}\:\mathrm{20}\:{apple}\:{in}\:{a}\:{box},\:{how}\:{many}\: \\ $$$${are}\:{the}\:{significant}\:{figures}\:{in}\:{it}? \\ $$

Question Number 163858    Answers: 0   Comments: 2

which object or substance has the 2rd number velocity after light?

$${which}\:{object}\:{or}\:{substance}\:{has}\:\:{the}\: \\ $$$$\mathrm{2}{rd}\:{number}\:{velocity}\:{after}\:{light}? \\ $$

Question Number 158878    Answers: 0   Comments: 0

Question Number 158694    Answers: 1   Comments: 0

Help me sir in phase sppace d^3 p=dp_x dp_(y ) dp_z then find ∫_0 ^∞ P^(2 ) e^(p^2 /(2mKT )) d^3 p =....

$${Help}\:{me}\:{sir} \\ $$$$\: \\ $$$${in}\:{phase}\:{sppace}\:\:{d}^{\mathrm{3}} {p}={dp}_{{x}} {dp}_{{y}\:} {dp}_{{z}} \:\:{then} \\ $$$${find} \\ $$$$\:\int_{\mathrm{0}} ^{\infty} \:{P}^{\mathrm{2}\:} {e}^{\frac{{p}^{\mathrm{2}} }{\mathrm{2}{mKT}\:}} \:\:{d}^{\mathrm{3}} {p}\:\:=.... \\ $$$$ \\ $$$$ \\ $$

Question Number 156968    Answers: 0   Comments: 0

Question Number 156660    Answers: 0   Comments: 0

Question Number 154554    Answers: 2   Comments: 1

Question Number 152652    Answers: 0   Comments: 1

Question Number 141700    Answers: 0   Comments: 2

Question Number 140938    Answers: 0   Comments: 0

Question Number 139002    Answers: 0   Comments: 2

Question Number 137429    Answers: 0   Comments: 4

A nuclide _(81)^(210) X decays to another nuclide _(80)^A Y in four successive radioactive decays. Each decay involves the emmision of either an alpha particle or a beta particle. The value of A is: A. 120 B. 206 C. 208 D. 212

$$\mathrm{A}\:\mathrm{nuclide}\:_{\mathrm{81}} ^{\mathrm{210}} {X}\:\mathrm{decays}\:\mathrm{to}\:\mathrm{another}\:\mathrm{nuclide}\:_{\mathrm{80}} ^{{A}} {Y}\:\mathrm{in}\: \\ $$$$\mathrm{four}\:\mathrm{successive}\:\mathrm{radioactive}\:\mathrm{decays}.\:\mathrm{Each}\:\mathrm{decay} \\ $$$$\mathrm{involves}\:\mathrm{the}\:\mathrm{emmision}\:\mathrm{of}\:\mathrm{either}\:\mathrm{an}\:\mathrm{alpha}\:\mathrm{particle} \\ $$$$\mathrm{or}\:\mathrm{a}\:\mathrm{beta}\:\mathrm{particle}.\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{A}\:\mathrm{is}: \\ $$$$\mathrm{A}.\:\mathrm{120}\:\:\:\:\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{206} \\ $$$$\mathrm{C}.\:\mathrm{208}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{212} \\ $$

Question Number 130180    Answers: 0   Comments: 0

Question Number 121092    Answers: 0   Comments: 0

Question Number 121082    Answers: 0   Comments: 0

Question Number 120132    Answers: 0   Comments: 0

Suppose you are in a imagnary train which travels at the half of the speed of light. Suppose You have a brother who is 7 year smaller than you. He stands on the platform which you had left. After 1 hour of travelling on the train you come back on the platform. Then you observe something strange. You can see your brother looks older . So what is his age?(He was ten years old)

$${Suppose}\:{you}\:{are}\:{in}\:{a}\:{imagnary}\:{train}\:{which}\:{travels}\:{at}\:{the}\:{half}\: \\ $$$${of}\:{the}\:{speed}\:{of}\:{light}.\:{Suppose}\:{You}\:{have}\:{a}\:{brother}\:{who}\:{is}\:\mathrm{7}\:{year} \\ $$$${smaller}\:{than}\:{you}.\:{He}\:{stands}\:{on}\:{the}\:{platform}\:{which}\:{you}\:{had}\:{left}. \\ $$$${After}\:\mathrm{1}\:{hour}\:{of}\:{travelling}\:{on}\:{the}\:{train}\:{you}\:{come}\:{back}\:{on}\:{the} \\ $$$${platform}.\:{Then}\:{you}\:{observe}\:{something}\:{strange}.\:{You}\:{can}\:{see} \\ $$$${your}\:{brother}\:{looks}\:{older}\:.\:{So}\:{what}\:{is}\:{his}\:{age}?\left({He}\:{was}\:{ten}\:{years}\right. \\ $$$$\left.{old}\right) \\ $$

  Pg 1      Pg 2      Pg 3   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com