Question and Answers Forum
All Questions Topic List
MensurationQuestion and Answers: Page 1
Question Number 213797 Answers: 1 Comments: 0
Question Number 213757 Answers: 0 Comments: 0
Question Number 212239 Answers: 2 Comments: 0
Question Number 212209 Answers: 1 Comments: 0
$$\:\:\:\cancel{\underbrace{\gtrdot}}\: \\ $$
Question Number 211018 Answers: 1 Comments: 1
Question Number 208526 Answers: 1 Comments: 2
Question Number 207389 Answers: 0 Comments: 1
Question Number 206808 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{10}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}^{\mathrm{10}} } \\ $$
Question Number 206294 Answers: 2 Comments: 2
$${Solve}\:{the}\:{system} \\ $$$$\left({a}+{b}\right)^{−\mathrm{1}} +{c}^{−\mathrm{1}} =\mathrm{2}^{−\mathrm{1}} \\ $$$$\left({c}+{b}\right)^{−\mathrm{1}} +{a}^{−\mathrm{1}} =\mathrm{3}^{−\mathrm{1}} \\ $$$$\left({a}+{c}\right)^{−\mathrm{1}} +{b}^{−\mathrm{1}} =\mathrm{4}^{−\mathrm{1}} \\ $$
Question Number 206212 Answers: 2 Comments: 4
Question Number 203605 Answers: 0 Comments: 3
$$\mathrm{Value}\:\mathrm{of}\:\boldsymbol{\mathrm{x}}? \\ $$
Question Number 200249 Answers: 1 Comments: 1
$$\boldsymbol{{Solve}}:\:\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{distance}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\boldsymbol{{P}}\left(\mathrm{3},\mathrm{4}\right)\:\boldsymbol{{from}}\:\boldsymbol{{the}}\:\boldsymbol{{line}}\:\boldsymbol{{y}}=−\mathrm{2}\boldsymbol{{x}}+\mathrm{3} \\ $$
Question Number 198749 Answers: 0 Comments: 0
$${Find}\:{area}\:{bounded}\:{by}\:{curve}\:{below} \\ $$$${cx}^{\mathrm{3}} +{c}^{\mathrm{2}} +{y}\left({y}+\mathrm{1}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} {y}+{cx}\left(\mathrm{3}{y}+\mathrm{1}\right) \\ $$
Question Number 197950 Answers: 0 Comments: 0
$${Let}\:{x},{y},{z}>\mathrm{0}\:,\:{x}+{y}+{z}=\mathrm{3}\:{Prove}\:{That}\:: \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}+\frac{\mathrm{1}}{\:\sqrt{{z}^{\mathrm{2}} +\mathrm{2}{z}}}+\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{{y}+\mathrm{2}}−\frac{{y}}{\mathrm{9}}\right)+\frac{\sqrt[{\mathrm{3}}]{\sqrt{{x}}+\sqrt{{y}}+\sqrt{{z}}+\mathrm{24}}}{\:\sqrt{\mathrm{3}}}\geqslant\frac{\mathrm{17}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$
Question Number 197834 Answers: 2 Comments: 0
Question Number 197569 Answers: 0 Comments: 2
Question Number 197128 Answers: 1 Comments: 1
Question Number 196571 Answers: 2 Comments: 0
Question Number 196320 Answers: 1 Comments: 0
$$\:\:{If}\:\:{a}\:\:{regular}\:{n}−{polygon}\:{can} \\ $$$$\:{be}\:{divided}\:{into}\:\:{n}\:\:{identical}\:\: \\ $$$${equilateral}\:{triangles}\:{then}\:\:{n}=\mathrm{6} \\ $$
Question Number 196084 Answers: 1 Comments: 0
Question Number 195790 Answers: 1 Comments: 2
$${a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers}\:{and}\:{abc}\:=\mathrm{1} \\ $$$${prove}\:{that} \\ $$$$\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\leqslant\mathrm{1} \\ $$
Question Number 195611 Answers: 1 Comments: 0
Question Number 195570 Answers: 1 Comments: 2
$$\mathrm{Given}\:\mathrm{three}\:\mathrm{Real}\:\mathrm{numbers}\:\left({x},{y},{z}\right),{such}\:{that} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{1} \\ $$$${maximize} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} −\mathrm{2}{z}^{\mathrm{4}} −\mathrm{3}\sqrt{\mathrm{2}}{xyz} \\ $$
Question Number 195590 Answers: 1 Comments: 0
Question Number 195484 Answers: 1 Comments: 0
Question Number 195470 Answers: 2 Comments: 0
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com