Question and Answers Forum

All Questions   Topic List

Matrices and DeterminantsQuestion and Answers: Page 1

Question Number 218046    Answers: 0   Comments: 0

Question Number 218045    Answers: 0   Comments: 0

Question Number 217085    Answers: 0   Comments: 2

Question Number 216764    Answers: 1   Comments: 0

solve x? (√x) + 11 = 0

$${solve}\:{x}? \\ $$$$\sqrt{{x}}\:+\:\mathrm{11}\:=\:\mathrm{0} \\ $$

Question Number 216755    Answers: 1   Comments: 0

Question Number 216526    Answers: 1   Comments: 0

Question Number 216525    Answers: 2   Comments: 0

Question Number 214713    Answers: 2   Comments: 0

Find matrix B if given AB=BA= (((0 0)),((0 0)) ) where A= (((5 3)),((5 3)) ) and B ≠ (((0 0)),((0 0)) )

$$\:\:\mathrm{Find}\:\mathrm{matrix}\:\mathrm{B}\:\mathrm{if}\:\mathrm{given}\:\mathrm{AB}=\mathrm{BA}=\begin{pmatrix}{\mathrm{0}\:\:\mathrm{0}}\\{\mathrm{0}\:\:\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\mathrm{where}\:\mathrm{A}=\:\begin{pmatrix}{\mathrm{5}\:\:\:\mathrm{3}}\\{\mathrm{5}\:\:\:\mathrm{3}}\end{pmatrix}\:\mathrm{and}\:\mathrm{B}\:\neq\:\begin{pmatrix}{\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{0}}\end{pmatrix} \\ $$$$ \\ $$

Question Number 214495    Answers: 0   Comments: 1

Question Number 214447    Answers: 1   Comments: 1

Question Number 213435    Answers: 0   Comments: 0

A ∈ M_(2×2) ,and ,det (A)≠0 : A^3 = A^2 + A ⇒ det ( A −2I )=?

$$ \\ $$$$\:\:\:\:\:\:\:{A}\:\in\:\mathrm{M}_{\mathrm{2}×\mathrm{2}} \:\:,{and}\:,{det}\:\left({A}\right)\neq\mathrm{0}\::\:\:\:{A}^{\mathrm{3}} \:=\:{A}^{\mathrm{2}} \:+\:{A} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\:{det}\:\left(\:{A}\:−\mathrm{2}{I}\:\right)=? \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 212844    Answers: 2   Comments: 1

$$\:\:\:\cancel{\downharpoonleft}\underline{\:} \\ $$

Question Number 211902    Answers: 1   Comments: 1

Question Number 208624    Answers: 1   Comments: 0

Question Number 208359    Answers: 1   Comments: 1

Question Number 207931    Answers: 2   Comments: 0

Question Number 205586    Answers: 1   Comments: 0

Givem that the matrix A = ((3,1,5),(2,3,5),(5,1,6) ). If Adj. A = (((13),(-1),(-10)),((13),(-7),(-5)),((-13),2,7) ) (i) find A^(−1) (ii) Use the result in (i) to find the values of x, y and z that will satisfy the equations: 3x + y + 5z = 8 2x +3y + 5z = 0 5x + y + 6z = 13

$${Givem}\:{that}\:{the}\:{matrix}\:{A}\:=\:\begin{pmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{1}}&{\mathrm{6}}\end{pmatrix}.\: \\ $$$${If}\:{Adj}.\:{A}\:=\:\begin{pmatrix}{\mathrm{13}}&{-\mathrm{1}}&{-\mathrm{10}}\\{\mathrm{13}}&{-\mathrm{7}}&{-\mathrm{5}}\\{-\mathrm{13}}&{\mathrm{2}}&{\mathrm{7}}\end{pmatrix} \\ $$$$\left({i}\right)\:{find}\:{A}^{−\mathrm{1}} \\ $$$$\left({ii}\right)\:{Use}\:{the}\:{result}\:{in}\:\left({i}\right)\:{to}\:{find}\:{the} \\ $$$${values}\:{of}\:{x},\:{y}\:{and}\:{z}\:{that}\:{will}\:{satisfy}\:{the} \\ $$$${equations}: \\ $$$$\mathrm{3}{x}\:+\:{y}\:+\:\mathrm{5}{z}\:=\:\mathrm{8} \\ $$$$\mathrm{2}{x}\:+\mathrm{3}{y}\:+\:\mathrm{5}{z}\:=\:\mathrm{0} \\ $$$$\mathrm{5}{x}\:+\:{y}\:+\:\mathrm{6}{z}\:=\:\mathrm{13} \\ $$

Question Number 205306    Answers: 1   Comments: 0

Question Number 203687    Answers: 0   Comments: 0

Question Number 203686    Answers: 0   Comments: 0

Question Number 203685    Answers: 0   Comments: 0

Question Number 202371    Answers: 2   Comments: 0

If A ∈ M_(2×2) , det(A )≠ 0 , A^( 3) = A^2 +A ⇒ Find the values of det (2A −I )

$$ \\ $$$$\:\:\:{If}\:\:\:\:{A}\:\in\:{M}_{\mathrm{2}×\mathrm{2}} \:,\:{det}\left({A}\:\right)\neq\:\mathrm{0} \\ $$$$\:\:\:\:,\:\:{A}^{\:\mathrm{3}} \:=\:{A}^{\mathrm{2}} \:+{A}\:\Rightarrow\:{Find}\:{the}\: \\ $$$$\:\:\:\:{values}\:{of}\:\:\:{det}\:\left(\mathrm{2}{A}\:−{I}\:\right) \\ $$$$ \\ $$

Question Number 199847    Answers: 0   Comments: 6

Find all possible value (a/(a+b+d )) +(b/(a+b+c)) + (c/(b+c+d))+(d/(a+c+d)) when a,b,c,d vary over positive reals

$$\:\mathrm{Find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{value}\: \\ $$$$\:\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}+\mathrm{d}\:}\:+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:+\:\frac{\mathrm{c}}{\mathrm{b}+\mathrm{c}+\mathrm{d}}+\frac{\mathrm{d}}{\mathrm{a}+\mathrm{c}+\mathrm{d}}\: \\ $$$$\:\mathrm{when}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{vary}\:\mathrm{over}\:\mathrm{positive} \\ $$$$\:\mathrm{reals}\: \\ $$

Question Number 199164    Answers: 0   Comments: 0

Question Number 199155    Answers: 0   Comments: 1

$$\:\underbrace{ } \\ $$

Question Number 199001    Answers: 1   Comments: 0

If ,A ∈ M_(n×n) , A^( 2) = A ,1≠ k ∈R. Find ( I − kA )^( −1) = ?

$$ \\ $$$$\:\mathrm{I}{f}\:,\mathrm{A}\:\in\:\mathrm{M}_{{n}×{n}} \:\:\:,\:\:\mathrm{A}^{\:\mathrm{2}} \:=\:\mathrm{A}\:,\mathrm{1}\neq\:{k}\:\in\mathbb{R}. \\ $$$$\:\:\:\mathrm{F}{ind}\:\:\:\:\left(\:\:\:\mathrm{I}\:−\:{k}\mathrm{A}\:\right)^{\:−\mathrm{1}} \:=\:?\: \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com