Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 209860 by lmcp1203 last updated on 23/Jul/24

  Magnitude A varies proportionally with (B squared + 4) and magnitude B varies proportionally with  (the root of C) − 5. Also when A is 16 , B is 12 and C takes the value 81. Calculate the value that A takes  when C is 49.   help  me. please. thanks

$$ \\ $$$$\mathrm{Magnitude}\:\mathrm{A}\:\mathrm{varies}\:\mathrm{proportionally}\:\mathrm{with}\:\left(\mathrm{B}\:\mathrm{squared}\:+\:\mathrm{4}\right)\:\mathrm{and}\:\mathrm{magnitude}\:\mathrm{B}\:\mathrm{varies}\:\mathrm{proportionally}\:\mathrm{with} \\ $$$$\left({t}\mathrm{he}\:\mathrm{root}\:\mathrm{of}\:\mathrm{C}\right)\:−\:\mathrm{5}.\:\mathrm{Also}\:\mathrm{when}\:\mathrm{A}\:\mathrm{is}\:\mathrm{16}\:,\:\mathrm{B}\:\mathrm{is}\:\mathrm{12}\:\mathrm{and}\:\mathrm{C}\:\mathrm{takes}\:\mathrm{the}\:\mathrm{value}\:\mathrm{81}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{that}\:\mathrm{A}\:\mathrm{takes} \\ $$$$\mathrm{wh}{e}\mathrm{n}\:\mathrm{C}\:\mathrm{is}\:\mathrm{49}.\:\:\:{help}\:\:{me}.\:{please}.\:{thanks} \\ $$

Answered by mr W last updated on 23/Jul/24

A=α(B^2 −4)  B=β((√C)−5)  16=α(12^2 −4) ⇒α=(4/(35))  12=β((√(81))−5) ⇒β=3  when C=49:  B=3×((√(49))−5)=6  A=(4/(35))(6^2 −4)=((128)/(35))   ← answer

$${A}=\alpha\left({B}^{\mathrm{2}} −\mathrm{4}\right) \\ $$$${B}=\beta\left(\sqrt{{C}}−\mathrm{5}\right) \\ $$$$\mathrm{16}=\alpha\left(\mathrm{12}^{\mathrm{2}} −\mathrm{4}\right)\:\Rightarrow\alpha=\frac{\mathrm{4}}{\mathrm{35}} \\ $$$$\mathrm{12}=\beta\left(\sqrt{\mathrm{81}}−\mathrm{5}\right)\:\Rightarrow\beta=\mathrm{3} \\ $$$${when}\:{C}=\mathrm{49}: \\ $$$${B}=\mathrm{3}×\left(\sqrt{\mathrm{49}}−\mathrm{5}\right)=\mathrm{6} \\ $$$${A}=\frac{\mathrm{4}}{\mathrm{35}}\left(\mathrm{6}^{\mathrm{2}} −\mathrm{4}\right)=\frac{\mathrm{128}}{\mathrm{35}}\:\:\:\leftarrow\:{answer} \\ $$

Answered by lmcp1203 last updated on 23/Jul/24

thank you.

$${thank}\:{you}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com