Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 194821 by sniper237 last updated on 16/Jul/23

M a inside poin in  ΔABC.  M = bar {(A, area(MBC)), (B, area(MAC)),(C,area(MAB))}

$${M}\:{a}\:{inside}\:{poin}\:{in}\:\:\Delta{ABC}. \\ $$$${M}\:=\:{bar}\:\left\{\left({A},\:{area}\left({MBC}\right)\right),\:\left({B},\:{area}\left({MAC}\right)\right),\left({C},{area}\left({MAB}\right)\right)\right\} \\ $$

Commented by mr W last updated on 16/Jul/23

what do mean with (A, area(MBC))?  what do mean with bar {X, Y, Z}?

$${what}\:{do}\:{mean}\:{with}\:\left({A},\:{area}\left({MBC}\right)\right)? \\ $$$${what}\:{do}\:{mean}\:{with}\:{bar}\:\left\{{X},\:{Y},\:{Z}\right\}? \\ $$

Commented by sniper237 last updated on 16/Jul/23

barycentric  sysrem of weighed poins   G=bary{(A,a) , (B,b) ,(C,c)} ⇔ aGA^→ +bGB^→ +cGC^→ =0^→   IA^→ +IB^→ =0^→  ⇔ I=bary{(A,1),(B,1)}

$${barycentric}\:\:{sysrem}\:{of}\:{weighed}\:{poins} \\ $$$$\:{G}={bary}\left\{\left({A},{a}\right)\:,\:\left({B},{b}\right)\:,\left({C},{c}\right)\right\}\:\Leftrightarrow\:{aG}\overset{\rightarrow} {{A}}+{bG}\overset{\rightarrow} {{B}}+{cG}\overset{\rightarrow} {{C}}=\overset{\rightarrow} {\mathrm{0}} \\ $$$${I}\overset{\rightarrow} {{A}}+{I}\overset{\rightarrow} {{B}}=\overset{\rightarrow} {\mathrm{0}}\:\Leftrightarrow\:{I}={bary}\left\{\left({A},\mathrm{1}\right),\left({B},\mathrm{1}\right)\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com