1)Let consider S= Σ_(n=0) ^∞ n and T=Σ_(n=0) ^∞ (−1)^(n+1) n
We know that ∀ x∈]−1;1]
Σ_(n=0) ^∞ (−x)^n =(1/(1+x)) ,
then after derivating
(1/((1+x)^2 ))=Σ_(n=1) ^∞ (−1)^(n+1) nx^(n−1)
for x=1 ,we get T=(1/4)
Now let ascertain something
T=Σ_(n=0) ^∞ (−1)^(2n+2) (2n+1) +Σ_(n=0) ^∞ (−1)^(2n+1) (2n)
=Σ_(n=0) ^∞ (2n+1) −2S (•)
knowing that S=Σ_(n=0) ^∞ (2n)+Σ_(n=0) ^∞ (2n+1)
So Σ_(n=0) ^∞ (2n+1)= S−2S
When replacing that value in (•)
we get
T=(S−2S )−2S
If i conclude that T=−3S
and finally find S=−(T/3)=−(1/(12))
where will the mistake be?
2)Let consider K=1+((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +......+...
((2020)/(2019))K=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +....
K−1=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +...
So ((2020)/(2019))K=K−1
Then K=−2019
Where is the error?
3)Let consider n an integer
We have
0=n−n
=n+(−n)=n+(−n)^(2×(1/2))
=n+[(−n)^2 ]^(1/2) =n+ (√n^2 ) = n+n=2n
So << all integer are null : 0 is the only integer>>
Where is the error?
4) let consider n an integer different of zero and f(n)=nln(n)
we have (df/dn)=ln(n)+1 (•)
Likewise f(n)=ln(n^n ) and we know that
n^n =n×n×n×......×n (n times)
So f(n)=ln(n)+ln(n)+......+ln(n) (n times)
Now we have (df/dn)=(1/n)+(1/n)+....+(1/n) (n times)
So (df/( dn))=1 (••)
Relation (•) and (••) give
ln(n)+1=1 then ln(n)=0 ⇒ n=1
<< The logarithm of all n≥1 is null : There is no integer big than 1 >>
Where is the error?
5) let consider x=0,999999999.......
we ascertain that
10x=9,999999999......
then 10x=9+0,999999999....
So 10x=9+x
finally x=1
<< 0.9999999999999999 ..... is and integer >>
Is there any error?
6)let consider a=((26666666666666666)/(66666666666666665))
b=((999999999999999999999995)/(199999999999999999999999))
In the way to cancel , if i just remove one common
figure to the numerator and to the denominator
And i find a=(2/5) and b=(5/1)
Will it be wrong? if no ,explain!
|