Question and Answers Forum
All Questions Topic List
LogarithmsQuestion and Answers: Page 1
Question Number 222929 Answers: 0 Comments: 0
Question Number 222799 Answers: 0 Comments: 1
$${x}^{{x}^{{y}} } =\mathrm{9}^{{xy}} \\ $$$${x}+{y}=\mathrm{1} \\ $$
Question Number 222697 Answers: 1 Comments: 0
Question Number 222679 Answers: 2 Comments: 0
$${If}\:{x}=\underset{{x}=\mathrm{1}} {\overset{\mathrm{10}} {\prod}}{x}\:{then}\:\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} {x}}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} {x}}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{4}} {x}}...+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{10}} {x}}=?? \\ $$
Question Number 222104 Answers: 2 Comments: 0
$$\:\:\:\:\mathrm{log}\:_{\mathrm{4}} \:\mathrm{x}\:−\:\mathrm{log}\:_{\mathrm{x}^{\mathrm{2}} } \:\mathrm{8}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{x}\:=?\: \\ $$
Question Number 222007 Answers: 0 Comments: 5
$$\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }+\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)=\mathrm{12}.\mathrm{5} \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\left(\mathrm{answer}\:\mathrm{should}\:\mathrm{not}\:\mathrm{be}\:\mathrm{in}\:\mathrm{decimal}\right) \\ $$
Question Number 221896 Answers: 1 Comments: 0
$${If}\:\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{7}={a}\:,{then}\:\mathrm{log}\underset{\mathrm{10}} {\:}\left(\frac{\mathrm{1}}{\mathrm{70}}\right)=? \\ $$
Question Number 221869 Answers: 1 Comments: 0
$${if}\:{a}^{\mathrm{3}−{x}} .{b}^{\mathrm{5}{x}} ={a}^{\mathrm{5}+{x}} .{b}^{\mathrm{3}{x}} \:{then}\:{show}\:{that} \\ $$$${x}\mathrm{log}\:\left(\frac{{b}}{{a}}\right)=\mathrm{log}\:{a} \\ $$
Question Number 221853 Answers: 2 Comments: 3
$${find}\:{x}\:{where} \\ $$$$\mathrm{log}\underset{\mathrm{8}} {\:}{x}−\mathrm{log}\underset{\mathrm{4}} {\:}{x}−\mathrm{log}\underset{\mathrm{2}} {\:}{x}=\mathrm{11} \\ $$
Question Number 221760 Answers: 1 Comments: 0
Question Number 221397 Answers: 0 Comments: 1
Question Number 221103 Answers: 0 Comments: 0
$$\mathrm{Prove}\::\:\:\:\:\:\forall\mathrm{x}\in\mathrm{IR},\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ch}\left(\mathrm{2xt}\right)\mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt}\:\leqslant\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}} \underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt} \\ $$
Question Number 218279 Answers: 2 Comments: 0
$$\mathrm{Evaluate}: \\ $$$$\:\:\:\:\:\frac{\mathrm{4}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{5}} } \\ $$$$\mathrm{Show}\:\mathrm{workings}\:\mathrm{please}. \\ $$
Question Number 217691 Answers: 3 Comments: 0
Question Number 215951 Answers: 1 Comments: 0
$${E}_{{n}} \:=\:\mathrm{3}^{{E}_{{n}−\mathrm{1}} } ,\:{n}\geqslant\mathrm{2} \\ $$$${find}\:{the}\:{unit}\:{digit}\:{of}\:{E}_{\mathrm{1000}} \\ $$
Question Number 215840 Answers: 2 Comments: 2
$$\:\:\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{3}=\:{a}\:\mathrm{and}\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{6}\:=\:\frac{{b}}{\mathrm{6}} \\ $$$$\:\:\:\mathrm{log}\:_{\sqrt{\mathrm{8}}} \:\left({b}−\mathrm{4}{a}\right)=\:? \\ $$
Question Number 215089 Answers: 1 Comments: 0
$$\:\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{x}\:+\:\mathrm{log}\:_{\mathrm{3}} \:\left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{5}\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$
Question Number 213923 Answers: 3 Comments: 0
Question Number 212645 Answers: 0 Comments: 0
$$\:\:\begin{cases}{\mathrm{x}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \mathrm{log}\:_{\mathrm{2}} \mathrm{y}}\\{\mathrm{y}=\mathrm{2}\:\mathrm{log}\:_{\mathrm{2}} \mathrm{z}\:}\\{\mathrm{z}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:}\end{cases} \\ $$
Question Number 212515 Answers: 1 Comments: 1
$$\:\:\mathrm{The}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{natural}\: \\ $$$$\:\:\:\mathrm{numbers}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{with}\:\mathrm{x},\mathrm{y}\:\leqslant\:\mathrm{33}\:\mathrm{that}\: \\ $$$$\:\:\:\mathrm{satisfy}\:\mathrm{5}\:\mid\:\mathrm{3}^{\mathrm{x}^{\mathrm{y}−\mathrm{1}} } \:+\:\mathrm{2}^{\mathrm{y}^{\mathrm{2x}} } \:\mathrm{is}\:...\: \\ $$$$\:\:\left(\mathrm{A}\right)\:\mathrm{295}\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{296}\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{297}\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{298}\:\:\:\left(\mathrm{E}\right)\:\mathrm{299} \\ $$
Question Number 212101 Answers: 0 Comments: 0
Question Number 211815 Answers: 1 Comments: 0
$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{has}\:{roots}\:\alpha\:{and}\:\beta \\ $$$${and}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu}.\:{show}\:{that}\:\lambda\mu{b}^{\mathrm{2}} \:=\:{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \\ $$
Question Number 209991 Answers: 2 Comments: 0
$$\:\:\:\:\:\frac{\mathrm{10}^{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{6}\right)} .\:\mathrm{15}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)} }{\mathrm{6}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)} .\:\mathrm{5}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)} }\:=?\: \\ $$
Question Number 208503 Answers: 0 Comments: 0
Question Number 208412 Answers: 2 Comments: 0
Question Number 208384 Answers: 2 Comments: 0
$$\:\:\:\:\downharpoonleft\underline{\:} \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com