Question and Answers Forum

All Questions   Topic List

LogarithmsQuestion and Answers: Page 1

Question Number 222929    Answers: 0   Comments: 0

Question Number 222799    Answers: 0   Comments: 1

x^x^y =9^(xy) x+y=1

$${x}^{{x}^{{y}} } =\mathrm{9}^{{xy}} \\ $$$${x}+{y}=\mathrm{1} \\ $$

Question Number 222697    Answers: 1   Comments: 0

Question Number 222679    Answers: 2   Comments: 0

If x=Π_(x=1) ^(10) x then (1/(log _2 x))+(1/(log _3 x))+(1/(log _4 x))...+(1/(log _(10) x))=??

$${If}\:{x}=\underset{{x}=\mathrm{1}} {\overset{\mathrm{10}} {\prod}}{x}\:{then}\:\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} {x}}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} {x}}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{4}} {x}}...+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{10}} {x}}=?? \\ $$

Question Number 222104    Answers: 2   Comments: 0

log _4 x − log _x^2 8 = 1 x =?

$$\:\:\:\:\mathrm{log}\:_{\mathrm{4}} \:\mathrm{x}\:−\:\mathrm{log}\:_{\mathrm{x}^{\mathrm{2}} } \:\mathrm{8}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{x}\:=?\: \\ $$

Question Number 222007    Answers: 0   Comments: 5

x(√(1+x^2 ))+log(x+(√(1+x^2 )))=12.5 find x^2 (answer should not be in decimal)

$$\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }+\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)=\mathrm{12}.\mathrm{5} \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\left(\mathrm{answer}\:\mathrm{should}\:\mathrm{not}\:\mathrm{be}\:\mathrm{in}\:\mathrm{decimal}\right) \\ $$

Question Number 221896    Answers: 1   Comments: 0

If log _(10) 7=a ,then log _(10) ((1/(70)))=?

$${If}\:\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{7}={a}\:,{then}\:\mathrm{log}\underset{\mathrm{10}} {\:}\left(\frac{\mathrm{1}}{\mathrm{70}}\right)=? \\ $$

Question Number 221869    Answers: 1   Comments: 0

if a^(3−x) .b^(5x) =a^(5+x) .b^(3x) then show that xlog ((b/a))=log a

$${if}\:{a}^{\mathrm{3}−{x}} .{b}^{\mathrm{5}{x}} ={a}^{\mathrm{5}+{x}} .{b}^{\mathrm{3}{x}} \:{then}\:{show}\:{that} \\ $$$${x}\mathrm{log}\:\left(\frac{{b}}{{a}}\right)=\mathrm{log}\:{a} \\ $$

Question Number 221853    Answers: 2   Comments: 3

find x where log _8 x−log _4 x−log _2 x=11

$${find}\:{x}\:{where} \\ $$$$\mathrm{log}\underset{\mathrm{8}} {\:}{x}−\mathrm{log}\underset{\mathrm{4}} {\:}{x}−\mathrm{log}\underset{\mathrm{2}} {\:}{x}=\mathrm{11} \\ $$

Question Number 221760    Answers: 1   Comments: 0

Question Number 221397    Answers: 0   Comments: 1

Question Number 221103    Answers: 0   Comments: 0

Prove : ∀x∈IR, ∀n∈IN^∗ ∫^( (π/2)) _( 0) ch(2xt)cos^(2n) (t) dt ≤ e^(x^2 /n) ∫^( (π/2)) _( 0) cos^(2n) (t) dt

$$\mathrm{Prove}\::\:\:\:\:\:\forall\mathrm{x}\in\mathrm{IR},\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ch}\left(\mathrm{2xt}\right)\mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt}\:\leqslant\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}} \underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt} \\ $$

Question Number 218279    Answers: 2   Comments: 0

Evaluate: (4^(log_(5/4) 4) /5^(log_(5/4) 5) ) Show workings please.

$$\mathrm{Evaluate}: \\ $$$$\:\:\:\:\:\frac{\mathrm{4}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{5}} } \\ $$$$\mathrm{Show}\:\mathrm{workings}\:\mathrm{please}. \\ $$

Question Number 217691    Answers: 3   Comments: 0

Question Number 215951    Answers: 1   Comments: 0

E_n = 3^E_(n−1) , n≥2 find the unit digit of E_(1000)

$${E}_{{n}} \:=\:\mathrm{3}^{{E}_{{n}−\mathrm{1}} } ,\:{n}\geqslant\mathrm{2} \\ $$$${find}\:{the}\:{unit}\:{digit}\:{of}\:{E}_{\mathrm{1000}} \\ $$

Question Number 215840    Answers: 2   Comments: 2

log _(24) 3= a and log _(24) 6 = (b/6) log _(√8) (b−4a)= ?

$$\:\:\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{3}=\:{a}\:\mathrm{and}\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{6}\:=\:\frac{{b}}{\mathrm{6}} \\ $$$$\:\:\:\mathrm{log}\:_{\sqrt{\mathrm{8}}} \:\left({b}−\mathrm{4}{a}\right)=\:? \\ $$

Question Number 215089    Answers: 1   Comments: 0

log _2 x + log _3 (x+1) = 5 x = ?

$$\:\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{x}\:+\:\mathrm{log}\:_{\mathrm{3}} \:\left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{5}\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$

Question Number 213923    Answers: 3   Comments: 0

Question Number 212645    Answers: 0   Comments: 0

{ ((x=2+ log _2 log _2 y)),((y=2 log _2 z )),((z=2+ log _2 log _2 x )) :}

$$\:\:\begin{cases}{\mathrm{x}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \mathrm{log}\:_{\mathrm{2}} \mathrm{y}}\\{\mathrm{y}=\mathrm{2}\:\mathrm{log}\:_{\mathrm{2}} \mathrm{z}\:}\\{\mathrm{z}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:}\end{cases} \\ $$

Question Number 212515    Answers: 1   Comments: 1

The numbers of pairs of natural numbers (x,y) with x,y ≤ 33 that satisfy 5 ∣ 3^x^(y−1) + 2^y^(2x) is ... (A) 295 (B) 296 (C) 297 (D) 298 (E) 299

$$\:\:\mathrm{The}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{natural}\: \\ $$$$\:\:\:\mathrm{numbers}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{with}\:\mathrm{x},\mathrm{y}\:\leqslant\:\mathrm{33}\:\mathrm{that}\: \\ $$$$\:\:\:\mathrm{satisfy}\:\mathrm{5}\:\mid\:\mathrm{3}^{\mathrm{x}^{\mathrm{y}−\mathrm{1}} } \:+\:\mathrm{2}^{\mathrm{y}^{\mathrm{2x}} } \:\mathrm{is}\:...\: \\ $$$$\:\:\left(\mathrm{A}\right)\:\mathrm{295}\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{296}\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{297}\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{298}\:\:\:\left(\mathrm{E}\right)\:\mathrm{299} \\ $$

Question Number 212101    Answers: 0   Comments: 0

Question Number 211815    Answers: 1   Comments: 0

ax^2 +bx+c=0 has roots α and β and (α/β)=(λ/μ). show that λμb^2 = ac(λ+μ)^2

$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{has}\:{roots}\:\alpha\:{and}\:\beta \\ $$$${and}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu}.\:{show}\:{that}\:\lambda\mu{b}^{\mathrm{2}} \:=\:{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \\ $$

Question Number 209991    Answers: 2   Comments: 0

((10^(log _3 (6)) . 15^(log _3 ((2/3))) )/(6^(log _3 ((2/3))) . 5^(log _3 ((4/3))) )) =?

$$\:\:\:\:\:\frac{\mathrm{10}^{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{6}\right)} .\:\mathrm{15}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)} }{\mathrm{6}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)} .\:\mathrm{5}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)} }\:=?\: \\ $$

Question Number 208503    Answers: 0   Comments: 0

Question Number 208412    Answers: 2   Comments: 0

Question Number 208384    Answers: 2   Comments: 0

$$\:\:\:\:\downharpoonleft\underline{\:} \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com