Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 62698 by Ankit0512 last updated on 24/Jun/19

Lines 5x+12y−10=0 and 5x−12y−40=0  touch circle C_1  of diameter 6. If the   center of C_1  lies in the Ist quadrant,  find the equation of circle C_2  which is   concentric with C_(1 )  and cuts intercept  of length 8 on these lines.

$${Lines}\:\mathrm{5}{x}+\mathrm{12}{y}−\mathrm{10}=\mathrm{0}\:{and}\:\mathrm{5}{x}−\mathrm{12}{y}−\mathrm{40}=\mathrm{0} \\ $$$${touch}\:{circle}\:{C}_{\mathrm{1}} \:{of}\:{diameter}\:\mathrm{6}.\:{If}\:{the}\: \\ $$$${center}\:{of}\:{C}_{\mathrm{1}} \:{lies}\:{in}\:{the}\:{Ist}\:{quadrant}, \\ $$$${find}\:{the}\:{equation}\:{of}\:{circle}\:{C}_{\mathrm{2}} \:{which}\:{is}\: \\ $$$${concentric}\:{with}\:{C}_{\mathrm{1}\:} \:{and}\:{cuts}\:{intercept} \\ $$$${of}\:{length}\:\mathrm{8}\:{on}\:{these}\:{lines}. \\ $$

Answered by tanmay last updated on 24/Jun/19

C_1   (x−a)^2 +(y−b)^2 =3^2    [r=(d/2)=(6/2)=3]  ∣((5a+12b−10)/(√(5^2 +12^2 )))∣=∣((5a−12b−40)/(√(5^2 +(−12)^2 )))∣=3  5a+12b−10=39  5a−12b−40=39  10a=78+50→a=12.8  24b+30=0→b=−(5/4)  C_1  (x−12.8)^2 +(y+(5/4))^2 =3^2   C_2   (x−12.8)^2 +(y+(5/4))^2 =R^2   distance from (12.8 ,(5/4)) to line 5x+12y−10=0  ∣((5×12.8−12×(5/4)−10)/(√(5^2 +12^2 )))∣=h(say)    ∣((39)/(13))∣=h  R^2 =h^2 +((8/2))^2   R^2 =9+16=25  C_2    (x−12.8)^2 +(y+(5/4))^2 =25

$${C}_{\mathrm{1}} \:\:\left({x}−{a}\right)^{\mathrm{2}} +\left({y}−{b}\right)^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} \:\:\:\left[{r}=\frac{{d}}{\mathrm{2}}=\frac{\mathrm{6}}{\mathrm{2}}=\mathrm{3}\right] \\ $$$$\mid\frac{\mathrm{5}{a}+\mathrm{12}{b}−\mathrm{10}}{\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }}\mid=\mid\frac{\mathrm{5}{a}−\mathrm{12}{b}−\mathrm{40}}{\sqrt{\mathrm{5}^{\mathrm{2}} +\left(−\mathrm{12}\right)^{\mathrm{2}} }}\mid=\mathrm{3} \\ $$$$\mathrm{5}{a}+\mathrm{12}{b}−\mathrm{10}=\mathrm{39} \\ $$$$\mathrm{5}{a}−\mathrm{12}{b}−\mathrm{40}=\mathrm{39} \\ $$$$\mathrm{10}{a}=\mathrm{78}+\mathrm{50}\rightarrow{a}=\mathrm{12}.\mathrm{8} \\ $$$$\mathrm{24}{b}+\mathrm{30}=\mathrm{0}\rightarrow{b}=−\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${C}_{\mathrm{1}} \:\left({x}−\mathrm{12}.\mathrm{8}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} \\ $$$${C}_{\mathrm{2}} \:\:\left({x}−\mathrm{12}.\mathrm{8}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} =\mathrm{R}^{\mathrm{2}} \\ $$$${distance}\:{from}\:\left(\mathrm{12}.\mathrm{8}\:,\frac{\mathrm{5}}{\mathrm{4}}\right)\:{to}\:{line}\:\mathrm{5}{x}+\mathrm{12}{y}−\mathrm{10}=\mathrm{0} \\ $$$$\mid\frac{\mathrm{5}×\mathrm{12}.\mathrm{8}−\mathrm{12}×\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{10}}{\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }}\mid={h}\left({say}\right) \\ $$$$ \\ $$$$\mid\frac{\mathrm{39}}{\mathrm{13}}\mid={h} \\ $$$${R}^{\mathrm{2}} ={h}^{\mathrm{2}} +\left(\frac{\mathrm{8}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} =\mathrm{9}+\mathrm{16}=\mathrm{25} \\ $$$${C}_{\mathrm{2}} \:\:\:\left({x}−\mathrm{12}.\mathrm{8}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} =\mathrm{25} \\ $$$$ \\ $$$$ \\ $$

Commented by ajfour last updated on 24/Jun/19

please check, Sir..

$${please}\:{check},\:{Sir}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com