Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 207194 by sniper237 last updated on 09/May/24

Let  x = cos(π/9)   Show that 8x^3 −6x−1=0  Deduce x is not  rational

$${Let}\:\:{x}\:=\:{cos}\frac{\pi}{\mathrm{9}}\: \\ $$$${Show}\:{that}\:\mathrm{8}{x}^{\mathrm{3}} −\mathrm{6}{x}−\mathrm{1}=\mathrm{0} \\ $$$${Deduce}\:{x}\:{is}\:{not}\:\:{rational}\: \\ $$

Answered by Berbere last updated on 09/May/24

cos(3.(π/9))=cos((π/3))=(1/2)  cos(3a)=Re(e^(ia) )^3 =4cos^3 (a)−3cos(a)  ⇒(1/2)=4x^3 −3x⇒8x^3 −6x−1=0  suupose x=(p/q);gcd(p,q)=1;  ⇒8p^3 −6pq^2 −q^3 =0⇔p(8p^2 −6q^2 )=q^3   ⇒p∣q^3 ⇒(gcd(p,q)=1⇒gcd(p,q^3 )=1⇒p=1  ⇒8−6q^2 −q^3 =0⇒q^2 ∣8⇒q∈{1,2} x=1;x=(1/2) impossible  ⇒x∉IQ

$${cos}\left(\mathrm{3}.\frac{\pi}{\mathrm{9}}\right)={cos}\left(\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${cos}\left(\mathrm{3}{a}\right)={Re}\left({e}^{{ia}} \right)^{\mathrm{3}} =\mathrm{4}{cos}^{\mathrm{3}} \left({a}\right)−\mathrm{3}{cos}\left({a}\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}\Rightarrow\mathrm{8}{x}^{\mathrm{3}} −\mathrm{6}{x}−\mathrm{1}=\mathrm{0} \\ $$$${suupose}\:{x}=\frac{{p}}{{q}};{gcd}\left({p},{q}\right)=\mathrm{1}; \\ $$$$\Rightarrow\mathrm{8}{p}^{\mathrm{3}} −\mathrm{6}{pq}^{\mathrm{2}} −{q}^{\mathrm{3}} =\mathrm{0}\Leftrightarrow{p}\left(\mathrm{8}{p}^{\mathrm{2}} −\mathrm{6}{q}^{\mathrm{2}} \right)={q}^{\mathrm{3}} \\ $$$$\Rightarrow{p}\mid{q}^{\mathrm{3}} \Rightarrow\left({gcd}\left({p},{q}\right)=\mathrm{1}\Rightarrow{gcd}\left({p},{q}^{\mathrm{3}} \right)=\mathrm{1}\Rightarrow{p}=\mathrm{1}\right. \\ $$$$\Rightarrow\mathrm{8}−\mathrm{6}{q}^{\mathrm{2}} −{q}^{\mathrm{3}} =\mathrm{0}\Rightarrow{q}^{\mathrm{2}} \mid\mathrm{8}\Rightarrow{q}\in\left\{\mathrm{1},\mathrm{2}\right\}\:{x}=\mathrm{1};{x}=\frac{\mathrm{1}}{\mathrm{2}}\:{impossible} \\ $$$$\Rightarrow{x}\notin\mathbb{IQ} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com