Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 209881 by naka3546 last updated on 24/Jul/24

Let n be positive integer satisfies    a_n  = 1 + (√(1/n)) − (√(1/(n+1))) − (√((1/n) − (1/(n+1))))    Find  the  value  of        a_1 a_2 a_3  …a_(99)

$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{satisfies} \\ $$$$ \\ $$$${a}_{{n}} \:=\:\mathrm{1}\:+\:\sqrt{\frac{\mathrm{1}}{{n}}}\:−\:\sqrt{\frac{\mathrm{1}}{{n}+\mathrm{1}}}\:−\:\sqrt{\frac{\mathrm{1}}{{n}}\:−\:\frac{\mathrm{1}}{{n}+\mathrm{1}}} \\ $$$$ \\ $$$$\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\: \\ $$$$ \\ $$$$\:\:\:{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} \:\ldots{a}_{\mathrm{99}} \\ $$

Commented by Frix last updated on 24/Jul/24

I found this:  Π_(k=1) ^(n(n+2)) (a_k ) =(2/((n+2)(n+1)))  99=n(n+2) ⇒ n=9 ⇒ answer is (1/(55))

$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}\left({n}+\mathrm{2}\right)} {\prod}}\left({a}_{{k}} \right)\:=\frac{\mathrm{2}}{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right)} \\ $$$$\mathrm{99}={n}\left({n}+\mathrm{2}\right)\:\Rightarrow\:{n}=\mathrm{9}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{55}} \\ $$

Commented by naka3546 last updated on 24/Jul/24

Thanks

$$\mathrm{Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com