Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 129622 by Ar Brandon last updated on 16/Jan/21

Let f(x)=(x+1)^2  for all x≥−1. If g(x) is the  function whose graph is the reflection of the graph  of f(x) with respect to the line y=x, then g(x) is  equal to...

$$\mathrm{Let}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\geqslant−\mathrm{1}.\:\mathrm{If}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{function}\:\mathrm{whose}\:\mathrm{graph}\:\mathrm{is}\:\mathrm{the}\:\mathrm{reflection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{graph} \\ $$$$\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}=\mathrm{x},\:\mathrm{then}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}... \\ $$

Commented by mr W last updated on 16/Jan/21

g(x)=f^(−1) (x)=(√x)−1

$${g}\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)=\sqrt{{x}}−\mathrm{1} \\ $$

Commented by Ar Brandon last updated on 17/Jan/21

Thanks Sir

Answered by bemath last updated on 17/Jan/21

  (((x′)),((y′)) ) =  (((0    1)),((1    0)) )  ((x),(y) ) ⇒  ((x),(y) ) =  (((0    1)),((1    0)) )^(−1)  (((x′)),((y′)) )    ((x),(y) ) = (1/(0−1))  (((    0    −1)),((−1        0)) )  (((x′)),((y′)) )    ((x),(y) ) =  (((0     1)),((1    0)) ) (((x′)),((y′)) )  = (((y′)),((x′)) )   f(x)=(x+1)^2  ⇒y=(x+1)^2    x′ = (y′+1)^2  ; y+1 = (√x) ; y = (√x) −1   g(x)=(√x) −1 .

$$\:\begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{0}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:\Rightarrow\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{0}}\end{pmatrix}^{−\mathrm{1}} \begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix} \\ $$$$\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\frac{\mathrm{1}}{\mathrm{0}−\mathrm{1}}\:\begin{pmatrix}{\:\:\:\:\mathrm{0}\:\:\:\:−\mathrm{1}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix} \\ $$$$\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{0}}\end{pmatrix}\begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}'}\end{pmatrix}\:\:=\begin{pmatrix}{\mathrm{y}'}\\{\mathrm{x}'}\end{pmatrix} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \:\Rightarrow\mathrm{y}=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{x}'\:=\:\left(\mathrm{y}'+\mathrm{1}\right)^{\mathrm{2}} \:;\:\mathrm{y}+\mathrm{1}\:=\:\sqrt{\mathrm{x}}\:;\:\mathrm{y}\:=\:\sqrt{\mathrm{x}}\:−\mathrm{1} \\ $$$$\:\mathrm{g}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}}\:−\mathrm{1}\:. \\ $$

Commented by Ar Brandon last updated on 17/Jan/21

Thanks bro

Terms of Service

Privacy Policy

Contact: info@tinkutara.com