Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213208 by issac last updated on 01/Nov/24

Let f(x)∈Q[x] irreducible of degree n  and K it′s Splitting Field over Q  Prove that if Gal(K\Q) is Abeilan  then ∣Gal(K\Q)∣=n  How can i prove this???

$$\mathrm{Let}\:{f}\left({x}\right)\in\mathbb{Q}\left[{x}\right]\:\mathrm{irreducible}\:\mathrm{of}\:\mathrm{degree}\:{n} \\ $$$$\mathrm{and}\:{K}\:\mathrm{it}'\mathrm{s}\:\mathrm{Splitting}\:\mathrm{Field}\:\mathrm{over}\:\mathbb{Q} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{Gal}\left({K}\backslash\mathbb{Q}\right)\:\mathrm{is}\:\mathrm{Abeilan} \\ $$$$\mathrm{then}\:\mid\mathrm{Gal}\left({K}\backslash\mathbb{Q}\right)\mid={n} \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{prove}\:\mathrm{this}??? \\ $$

Answered by MrGaster last updated on 01/Nov/24

f(x)∈ Q[x],deg(f)=n  K/Q is the splitting field of f(x)=G=Gal(K/Q)  G is abelian  α_1 ,α_2 ,…,α_n are roots of f(x)in K  K=Q(α_1 ,α_2 ,…,α_n )  ∣G∣=[K:Q]  σ ∈ G,σ(α_i )=α_j ,σ(α_j )=α_i ,σ(α_κ )=α_κ ,k≠i,j  στ=τσ,∀σ,τ  ∈ G  σ(α_i )α_j ⇒σ(α_j )=α_i or α_j   σ(α_i )=α_j ,τ(α_i )=α_κ ,σ(α_κ )=α_κ   στ(α_i )=σ(α_κ )=α_κ   τσ(α_i )=τ(α_j )=α_κ   σ(α_j )=α_j for all σ ∈ G  σ(α_i )=α_j ⇒α_i and α_j are conjugate over Q α_1 ,α_2 ,…,α_n  are distinct and conjugate o  ∣G∣=n

$${f}\left({x}\right)\in\:\mathbb{Q}\left[{x}\right],\mathrm{deg}\left({f}\right)={n} \\ $$$${K}/\mathbb{Q}\:\mathrm{is}\:\mathrm{the}\:\mathrm{splitting}\:\mathrm{field}\:\mathrm{of}\:{f}\left({x}\right)={G}={G}\mathrm{al}\left({K}/\mathbb{Q}\right) \\ $$$${G}\:\mathrm{is}\:\mathrm{abelian} \\ $$$$\alpha_{\mathrm{1}} ,\alpha_{\mathrm{2}} ,\ldots,\alpha_{{n}} \mathrm{are}\:\mathrm{roots}\:\mathrm{of}\:{f}\left({x}\right)\mathrm{in}\:{K} \\ $$$${K}=\mathbb{Q}\left(\alpha_{\mathrm{1}} ,\alpha_{\mathrm{2}} ,\ldots,\alpha_{{n}} \right) \\ $$$$\mid{G}\mid=\left[{K}:\mathbb{Q}\right] \\ $$$$\sigma\:\in\:{G},\sigma\left(\alpha_{{i}} \right)=\alpha_{{j}} ,\sigma\left(\alpha_{{j}} \right)=\alpha_{{i}} ,\sigma\left(\alpha_{\kappa} \right)=\alpha_{\kappa} ,{k}\neq{i},{j} \\ $$$$\sigma\tau=\tau\sigma,\forall\sigma,\tau\:\:\in\:{G} \\ $$$$\sigma\left(\alpha_{{i}} \right)\alpha_{{j}} \Rightarrow\sigma\left(\alpha_{{j}} \right)=\alpha_{{i}} \mathrm{or}\:\alpha_{{j}} \\ $$$$\sigma\left(\alpha_{{i}} \right)=\alpha_{{j}} ,\tau\left(\alpha_{{i}} \right)=\alpha_{\kappa} ,\sigma\left(\alpha_{\kappa} \right)=\alpha_{\kappa} \\ $$$$\sigma\tau\left(\alpha_{{i}} \right)=\sigma\left(\alpha_{\kappa} \right)=\alpha_{\kappa} \\ $$$$\tau\sigma\left(\alpha_{{i}} \right)=\tau\left(\alpha_{{j}} \right)=\alpha_{\kappa} \\ $$$$\sigma\left(\alpha_{{j}} \right)=\alpha_{{j}} \mathrm{for}\:\mathrm{all}\:\sigma\:\in\:{G} \\ $$$$\sigma\left(\alpha_{{i}} \right)=\alpha_{{j}} \Rightarrow\alpha_{{i}} \mathrm{and}\:\alpha_{{j}} \mathrm{are}\:\mathrm{conjugate}\:\mathrm{over}\:\mathbb{Q}\:\alpha_{\mathrm{1}} ,\alpha_{\mathrm{2}} ,\ldots,\alpha_{{n}} \:\mathrm{are}\:\mathrm{distinct}\:\mathrm{and}\:\mathrm{conjugate}\:\mathrm{o} \\ $$$$\mid{G}\mid={n} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com