Question Number 216532 by sniper237 last updated on 11/Feb/25 | ||
![]() | ||
$${Let}\:{f}\::\mathbb{R}_{+} \rightarrow\mathbb{R}\:{such}\:{as}\:{f}\left({xy}\right)={f}\left({x}\right)+{f}\left({y}\right) \\ $$$$\left.\mathrm{1}\right)\:{Prove}\:{that}\:\:{f}\:{is}\:{derivable}\:{iff}\:\: \\ $$$${f}\:{is}\:{derivable}\:{at}\:{x}=\mathrm{1}. \\ $$$$\left.\mathrm{2}\left.\right)\:{Prove}\:{that}\:{if}\:{so},\:{f}\left({x}\right)={Log}_{{a}} {x}\right)\: \\ $$$${where}\:{a}\:{is}\:{positive}\:{value}\:{to}\:{precise} \\ $$ | ||
Answered by maths2 last updated on 11/Feb/25 | ||
![]() | ||
$${f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left({y}\right)..? \\ $$$$ \\ $$ | ||
Commented by sniper237 last updated on 11/Feb/25 | ||
![]() | ||
$${Sorry}\:{i}\:{forgot}\:,\:{it}'{s}\:{f}\left({xy}\right)={f}\left({x}\right)+{f}\left({y}\right) \\ $$ | ||
Answered by maths2 last updated on 13/Feb/25 | ||
![]() | ||
$${let}\:{D}\:{set}\:{of}\:{derivable}\:{function} \\ $$$${if}\:{f}\in{D}\Rightarrow{f}\:{is}\:{derivable}\:{at}\:\mathrm{1} \\ $$$${if}\:{f}\:{is}\:{derivable}\:{at}\:{x}=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\frac{{f}\left({xy}\right)−{f}\left({y}\right)}{{x}−\mathrm{1}}=\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}}={f}'\left(\mathrm{1}\right)\in\mathbb{R} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{f}\left({xy}\right)−{f}\left({y}\right)}{{x}−\mathrm{1}}={f}'\left(\mathrm{1}\right),\forall{y}\in\mathbb{R} \\ $$$$\partial_{{x}} {f}\left({xy}\right)\mid_{{x}=\mathrm{1}} ={yf}'\left({y}\right)\Rightarrow{f}'\left({y}\right)=\frac{{f}'\left(\mathrm{1}\right)}{{y}};\forall{y}\in\mathbb{R}\Rightarrow{f}\left({y}\right)\in{D} \\ $$$$\left.\mathrm{2}\right)\:{f}'\left({x}\right)=\frac{\mathrm{1}}{{x}}{f}'\left(\mathrm{1}\right);{f}'\left(\mathrm{1}\right)={a} \\ $$$$\Rightarrow{f}\left({x}\right)={aln}\left({x}\right)+{b};{f}\left(\mathrm{1}\right)=\mathrm{0}\Rightarrow{b}=\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)={aln}\left({x}\right) \\ $$$${let}\:{a}=\frac{\mathrm{1}}{{ln}\left({b}\right)};{b}={e}^{\frac{\mathrm{1}}{{f}'\left(\mathrm{1}\right)}} \\ $$$$\Rightarrow{f}\left({x}\right)={ln}_{{b}} \left({x}\right) \\ $$ | ||