Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 13601 by Tinkutara last updated on 21/May/17

Let f : R − {(3/5)} → R be defined by  f(x) = ((3x + 2)/(5x − 3)) . Then,  (a) f^(−1) (x) = x  (b) f^(−1) (x) = −f(x)  (c) fof(x) = −x  (d) f^(−1) (x) = (1/(19))f(x)

$$\mathrm{Let}\:{f}\::\:\mathbb{R}\:−\:\left\{\frac{\mathrm{3}}{\mathrm{5}}\right\}\:\rightarrow\:\mathbb{R}\:\mathrm{be}\:\mathrm{defined}\:\mathrm{by} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{3}}\:.\:\mathrm{Then}, \\ $$$$\left(\mathrm{a}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:{x} \\ $$$$\left(\mathrm{b}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:−{f}\left({x}\right) \\ $$$$\left(\mathrm{c}\right)\:{fof}\left({x}\right)\:=\:−{x} \\ $$$$\left(\mathrm{d}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{19}}{f}\left({x}\right) \\ $$

Answered by mrW1 last updated on 21/May/17

y = ((3x + 2)/(5x − 3))  5yx−3y=3x+2  (5y−3)x=3y+2  x=((3y+2)/(5y−3))  ⇒f^(−1) (x)=((3x+2)/(5x−3))=f(x)  fof(x)=((3(((3x+2)/(5x−3)))+2)/(5(((3x+2)/(5x−3)))−3))=((9x+6+10x−6)/(15x+10−15x+9))=((19x)/(19))=x    no answer seems to be true...

$${y}\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{3}} \\ $$$$\mathrm{5}{yx}−\mathrm{3}{y}=\mathrm{3}{x}+\mathrm{2} \\ $$$$\left(\mathrm{5}{y}−\mathrm{3}\right){x}=\mathrm{3}{y}+\mathrm{2} \\ $$$${x}=\frac{\mathrm{3}{y}+\mathrm{2}}{\mathrm{5}{y}−\mathrm{3}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}−\mathrm{3}}={f}\left({x}\right) \\ $$$${fof}\left({x}\right)=\frac{\mathrm{3}\left(\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}−\mathrm{3}}\right)+\mathrm{2}}{\mathrm{5}\left(\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}−\mathrm{3}}\right)−\mathrm{3}}=\frac{\mathrm{9}{x}+\mathrm{6}+\mathrm{10}{x}−\mathrm{6}}{\mathrm{15}{x}+\mathrm{10}−\mathrm{15}{x}+\mathrm{9}}=\frac{\mathrm{19}{x}}{\mathrm{19}}={x} \\ $$$$ \\ $$$${no}\:{answer}\:{seems}\:{to}\:{be}\:{true}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com