Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 125814 by Tanuidesire last updated on 14/Dec/20

Let f:[1,5]→R be defined by f(x)=(6/(x+1)). Show that f has a unique fixed point and find it.

$${Let}\:{f}:\left[\mathrm{1},\mathrm{5}\right]\rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x}\right)=\frac{\mathrm{6}}{{x}+\mathrm{1}}.\:{Show}\:{that}\:{f}\:{has}\:{a}\:{unique}\:{fixed}\:{point}\:{and}\:{find}\:{it}. \\ $$

Answered by Olaf last updated on 14/Dec/20

f strictly decreases and :  f(1) = (6/(1+1)) = 3  f(5) = (6/(5+1)) = 1  f([1,5]) = [1,3] ⊆ [1,5]  and :  f(x) = x ⇔ x^2 +x−6 = 0  ⇔ x = ((−1±(√(1−4(1)(−6))))/2) = −3 or 2  Only x = 2 is included in [1,5].  ⇒ S = { 2 }.

$${f}\:\mathrm{strictly}\:\mathrm{decreases}\:\mathrm{and}\:: \\ $$$${f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{6}}{\mathrm{1}+\mathrm{1}}\:=\:\mathrm{3} \\ $$$${f}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{6}}{\mathrm{5}+\mathrm{1}}\:=\:\mathrm{1} \\ $$$${f}\left(\left[\mathrm{1},\mathrm{5}\right]\right)\:=\:\left[\mathrm{1},\mathrm{3}\right]\:\subseteq\:\left[\mathrm{1},\mathrm{5}\right] \\ $$$$\mathrm{and}\:: \\ $$$${f}\left({x}\right)\:=\:{x}\:\Leftrightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{6}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:{x}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}\left(\mathrm{1}\right)\left(−\mathrm{6}\right)}}{\mathrm{2}}\:=\:−\mathrm{3}\:\mathrm{or}\:\mathrm{2} \\ $$$$\mathrm{Only}\:{x}\:=\:\mathrm{2}\:\mathrm{is}\:\mathrm{included}\:\mathrm{in}\:\left[\mathrm{1},\mathrm{5}\right]. \\ $$$$\Rightarrow\:\mathcal{S}\:=\:\left\{\:\mathrm{2}\:\right\}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com