Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 196872 by York12 last updated on 02/Sep/23

Let ξ be a positive Root of x^2 −2023x−1  Define a sequence ϕ_i  such That ϕ_0 =1  ϕ_(n+1) =⌊ϕ_n ξ⌋, find The Remainder When ϕ_(2023 ) is divided by (√ϕ_2 )

$${Let}\:\xi\:{be}\:{a}\:{positive}\:{Root}\:{of}\:{x}^{\mathrm{2}} −\mathrm{2023}{x}−\mathrm{1} \\ $$$${Define}\:{a}\:{sequence}\:\varphi_{{i}} \:{such}\:{That}\:\varphi_{\mathrm{0}} =\mathrm{1} \\ $$$$\varphi_{{n}+\mathrm{1}} =\lfloor\varphi_{{n}} \xi\rfloor,\:{find}\:{The}\:{Remainder}\:{When}\:\varphi_{\mathrm{2023}\:} {is}\:{divided}\:{by}\:\sqrt{\varphi_{\mathrm{2}} } \\ $$

Answered by York12 last updated on 02/Sep/23

  x^2 −2023x−1=0 ∧ ξ is a positive root   since the product of Roots =−1  ⇒The other Root =(1/ξ)  ξ−(1/ξ)=2023⇒ξ=2023+(1/ξ)  ⇒ϕ_n =⌊ϕ_(n−1) ξ⌋=⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋  2023ϕ_(n−1) ∈Z^+ ⇒⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋=2023ϕ_(n−1) +⌊(ϕ_(n−1) /(2023))⌋  We have  ϕ_n =⌊ϕ_(n−1) ξ⌋⇔ϕ_n ≤ϕ_(n−1) ξ<ϕ_n +1  ⇒(ϕ_n /ξ)≤ϕ_(n−1) <(ϕ_n /ξ)+(1/(2023+(1/ξ)))     ,∧(1/(2023+(1/ξ)))<1  ⇒⌊(ϕ_n /ξ)⌋∈{ϕ_(n−1) ,ϕ_(n−1) −1}  ⌊(ϕ_n /ξ)⌋=ϕ_(n−1) ⇔(ϕ_n /ξ)=ϕ_(n−1) ,but ϕ_n ,ϕ_(n−1) ∈Z^+ ∧ξ∈Q^′   ⇒(ϕ_n /ξ)∉Z^+ ⇒(ϕ_n /ξ)≠ϕ_(n−1) ⇒⌊(ϕ_n /ξ)⌋=ϕ_(n−1) −1  ⇒ϕ_n =2023ϕ_(n−1) +ϕ_(n−2) −1  ⇒ϕ_2 =2023^2 ⇒(√ϕ_2 )=2023  ⇒(ϕ_n /(2023))=ϕ_(n−1) +((ϕ_(n−2) −1)/(2023))  ⇒ϕ_n ≡ϕ_(n−2) −1 mod(2023)  ⇒ϕ_(2023) ≡ϕ_(2021) −1 mod(2023)≡ϕ_(2019) −1 mod(2023)  ....≡ϕ_1 −1011 mod (2023)≡1012 mod(2023)

$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{2023}{x}−\mathrm{1}=\mathrm{0}\:\wedge\:\xi\:{is}\:{a}\:{positive}\:{root}\: \\ $$$${since}\:{the}\:{product}\:{of}\:{Roots}\:=−\mathrm{1} \\ $$$$\Rightarrow{The}\:{other}\:{Root}\:=\frac{\mathrm{1}}{\xi} \\ $$$$\xi−\frac{\mathrm{1}}{\xi}=\mathrm{2023}\Rightarrow\xi=\mathrm{2023}+\frac{\mathrm{1}}{\xi} \\ $$$$\Rightarrow\varphi_{{n}} =\lfloor\varphi_{{n}−\mathrm{1}} \xi\rfloor=\lfloor\varphi_{{n}−\mathrm{1}} ×\mathrm{2023}+\varphi_{{n}−\mathrm{1}} ×\frac{\mathrm{1}}{\xi}\rfloor \\ $$$$\mathrm{2023}\varphi_{{n}−\mathrm{1}} \in\mathbb{Z}^{+} \Rightarrow\lfloor\varphi_{{n}−\mathrm{1}} ×\mathrm{2023}+\varphi_{{n}−\mathrm{1}} ×\frac{\mathrm{1}}{\xi}\rfloor=\mathrm{2023}\varphi_{{n}−\mathrm{1}} +\lfloor\frac{\varphi_{{n}−\mathrm{1}} }{\mathrm{2023}}\rfloor \\ $$$${We}\:{have} \\ $$$$\varphi_{{n}} =\lfloor\varphi_{{n}−\mathrm{1}} \xi\rfloor\Leftrightarrow\varphi_{{n}} \leqslant\varphi_{{n}−\mathrm{1}} \xi<\varphi_{{n}} +\mathrm{1} \\ $$$$\Rightarrow\frac{\varphi_{{n}} }{\xi}\leqslant\varphi_{{n}−\mathrm{1}} <\frac{\varphi_{{n}} }{\xi}+\frac{\mathrm{1}}{\mathrm{2023}+\frac{\mathrm{1}}{\xi}}\:\:\:\:\:,\wedge\frac{\mathrm{1}}{\mathrm{2023}+\frac{\mathrm{1}}{\xi}}<\mathrm{1} \\ $$$$\Rightarrow\lfloor\frac{\varphi_{{n}} }{\xi}\rfloor\in\left\{\varphi_{{n}−\mathrm{1}} ,\varphi_{{n}−\mathrm{1}} −\mathrm{1}\right\} \\ $$$$\lfloor\frac{\varphi_{{n}} }{\xi}\rfloor=\varphi_{{n}−\mathrm{1}} \Leftrightarrow\frac{\varphi_{{n}} }{\xi}=\varphi_{{n}−\mathrm{1}} ,{but}\:\varphi_{{n}} ,\varphi_{{n}−\mathrm{1}} \in\mathbb{Z}^{+} \wedge\xi\in\mathbb{Q}^{'} \\ $$$$\Rightarrow\frac{\varphi_{{n}} }{\xi}\notin\mathbb{Z}^{+} \Rightarrow\frac{\varphi_{{n}} }{\xi}\neq\varphi_{{n}−\mathrm{1}} \Rightarrow\lfloor\frac{\varphi_{{n}} }{\xi}\rfloor=\varphi_{{n}−\mathrm{1}} −\mathrm{1} \\ $$$$\Rightarrow\varphi_{{n}} =\mathrm{2023}\varphi_{{n}−\mathrm{1}} +\varphi_{{n}−\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\varphi_{\mathrm{2}} =\mathrm{2023}^{\mathrm{2}} \Rightarrow\sqrt{\varphi_{\mathrm{2}} }=\mathrm{2023} \\ $$$$\Rightarrow\frac{\varphi_{{n}} }{\mathrm{2023}}=\varphi_{{n}−\mathrm{1}} +\frac{\varphi_{{n}−\mathrm{2}} −\mathrm{1}}{\mathrm{2023}} \\ $$$$\Rightarrow\varphi_{{n}} \equiv\varphi_{{n}−\mathrm{2}} −\mathrm{1}\:{mod}\left(\mathrm{2023}\right) \\ $$$$\Rightarrow\varphi_{\mathrm{2023}} \equiv\varphi_{\mathrm{2021}} −\mathrm{1}\:{mod}\left(\mathrm{2023}\right)\equiv\varphi_{\mathrm{2019}} −\mathrm{1}\:{mod}\left(\mathrm{2023}\right) \\ $$$$....\equiv\varphi_{\mathrm{1}} −\mathrm{1011}\:{mod}\:\left(\mathrm{2023}\right)\equiv\mathrm{1012}\:{mod}\left(\mathrm{2023}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com