Question Number 144634 by loveineq last updated on 27/Jun/21 | ||
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\: \\ $$ $$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\frac{\mathrm{2}{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{c}+{a}}\:\geqslant\:\mathrm{6} \\ $$ $$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{3}} +\mathrm{3}{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +\frac{\mathrm{3}{b}\left({c}^{\mathrm{3}} +{a}^{\mathrm{3}} \right)}{{c}+{a}}\:\geqslant\:\mathrm{8} \\ $$ $$\left(\mathrm{3}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{4}} +\mathrm{4}{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +\frac{\mathrm{4}{b}\left({c}^{\mathrm{4}} +{a}^{\mathrm{4}} \right)}{{c}+{a}}\:\geqslant\:\mathrm{10} \\ $$ | ||
Answered by mindispower last updated on 27/Jun/21 | ||
$${c}^{\mathrm{2}} +{a}^{\mathrm{2}} \geqslant\frac{\mathrm{1}}{\mathrm{2}}\left({c}+{a}\right)^{\mathrm{2}} \\ $$ $$\left(\mathrm{1}\right)\Leftrightarrow\geqslant{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{b}\left({c}+{a}\right) \\ $$ $${a}^{\mathrm{2}} +{c}^{\mathrm{2}} \geqslant{ac}+\frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$ $$\geqslant\left({b}^{\mathrm{2}} +{bc}+{ac}+{cb}\right)+{b}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$ $${b}^{\mathrm{2}} +{bc}+{ac}+{cb}+\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}}={t} \\ $$ $$\left({b}+{a}\right)\left({b}+{c}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{4}}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{2}}{b}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$ $$\geqslant\mathrm{4}+\frac{\mathrm{1}}{\mathrm{4}}.\mathrm{2}{ab}+\frac{\mathrm{1}}{\mathrm{4}}.\mathrm{2}{bc}+\frac{\mathrm{1}}{\mathrm{2}}{b}^{\mathrm{2}} +\frac{\mathrm{2}{ac}}{\mathrm{4}}=\mathrm{4}+\frac{\mathrm{1}}{\mathrm{2}}\left({b}^{\mathrm{2}} +{ac}+{bc}+{ab}\right) \\ $$ $$=\mathrm{4}+\frac{\mathrm{1}}{\mathrm{2}}\left({b}+{a}\right)\left({b}+{c}\right)=\mathrm{6} \\ $$ $$\Leftrightarrow\geqslant\mathrm{6} \\ $$ $$ \\ $$ $$ \\ $$ | ||
Answered by mindispower last updated on 27/Jun/21 | ||
$$\left(\mathrm{2}\right)\:{i}\:{think}\:\frac{\mathrm{3}{b}\left({c}^{\mathrm{3}} +{a}^{\mathrm{3}} \right)}{{c}+{a}}....? \\ $$ $$\left(\mathrm{3}\right)...\left(\mathrm{4}\right)\:{Weighted}\:{AM}\:{worcks} \\ $$ $$ \\ $$ | ||
Commented byloveineq last updated on 27/Jun/21 | ||
$${yes},\:{is}\:\frac{{c}^{\mathrm{3}} +{a}^{\mathrm{3}} }{{c}+{a}}. \\ $$ | ||