Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 76229 by arkanmath7@gmail.com last updated on 25/Dec/19

Let P(x) be polynomial in x with integral  coefficients. If n is a solution of   P(x)≡0(mod n) , and a≡b(mod n),  prove that b is also a solution.

$${Let}\:{P}\left({x}\right)\:{be}\:{polynomial}\:{in}\:{x}\:{with}\:{integral} \\ $$$${coefficients}.\:{If}\:{n}\:{is}\:{a}\:{solution}\:{of}\: \\ $$$${P}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right)\:,\:{and}\:{a}\equiv{b}\left({mod}\:{n}\right), \\ $$$${prove}\:{that}\:{b}\:{is}\:{also}\:{a}\:{solution}. \\ $$

Answered by Rio Michael last updated on 25/Dec/19

generally if a≡b(mod n) then n∣(a−b)  if n∣(a−b) and n∣p(x) from p(x)≡ 0(modn)  then (a−b) is also a solution  now if  a≡b(mod n) then b≡a(mod n)  which means a≡b(mod n) hence a and b  are solutions to p(x)≡0(mod n)  hence b is a solution.

$${generally}\:{if}\:{a}\equiv{b}\left({mod}\:{n}\right)\:{then}\:{n}\mid\left({a}−{b}\right) \\ $$$${if}\:{n}\mid\left({a}−{b}\right)\:{and}\:{n}\mid{p}\left({x}\right)\:{from}\:{p}\left({x}\right)\equiv\:\mathrm{0}\left({modn}\right) \\ $$$${then}\:\left({a}−{b}\right)\:{is}\:{also}\:{a}\:{solution} \\ $$$${now}\:{if}\:\:{a}\equiv{b}\left({mod}\:{n}\right)\:{then}\:{b}\equiv{a}\left({mod}\:{n}\right) \\ $$$${which}\:{means}\:{a}\equiv{b}\left({mod}\:{n}\right)\:{hence}\:{a}\:{and}\:{b} \\ $$$${are}\:{solutions}\:{to}\:{p}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right) \\ $$$${hence}\:{b}\:{is}\:{a}\:{solution}. \\ $$

Commented by arkanmath7@gmail.com last updated on 25/Dec/19

thnx sir

$${thnx}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com