Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 1778 by 112358 last updated on 23/Sep/15

Let P(t) denote a given cubic  polynomial. Find the constants  a_1 ,u_1 ,a_2  and u_2  such that  ∫_(−1) ^( 1) P(t)dt=a_1 P(u_1 )+a_2 P(u_2 ).

$${Let}\:{P}\left({t}\right)\:{denote}\:{a}\:{given}\:{cubic} \\ $$$${polynomial}.\:{Find}\:{the}\:{constants} \\ $$$${a}_{\mathrm{1}} ,{u}_{\mathrm{1}} ,{a}_{\mathrm{2}} \:{and}\:{u}_{\mathrm{2}} \:{such}\:{that} \\ $$$$\int_{−\mathrm{1}} ^{\:\mathrm{1}} {P}\left({t}\right){dt}={a}_{\mathrm{1}} {P}\left({u}_{\mathrm{1}} \right)+{a}_{\mathrm{2}} {P}\left({u}_{\mathrm{2}} \right). \\ $$

Answered by Rasheed Soomro last updated on 23/Sep/15

Let P(t)=at^3 +bt^2 +ct+d  LHS:        ∫P(t)dt=(a/4)t^4 +(b/3)t^3 +(c/2)t^2 +dt+C         ∫_(−1) ^( 1) P(t)dt=[(a/4)t^4 +(b/3)t^3 +(c/2)t^2 +dt+C]_(−1) ^1                   =[(a/4)+(b/3)+(c/2)+d+C]−[(a/4)−(b/3)+(c/2)−d+C]                  =((2b)/3)+2d  RHS:         a_1 P(u_1 )+a_2 P(u_2 )       =a_1 {a(u_1 )^3 +b(u_1 )^2 +c(u_1 )+d}+a_2 {a(u_2 )^3 +b(u_2 )^2 +cu_2 +d}  Comparing coefficients of b  and  d in LHS  and  RHS     (2/3)=a_1 (u_1 )^2 +a_2 (u_2 )^2     and   2=a_1 +a_2   Solving simultaneously              3(u_1 )^2  a_1 +3(u_1 )^2 a_2 =6(u_1 )^2     ............I            3(u_1 )^2 a_1 +3(u_2 )^2 a_2 =2                 ............II   Subtracting  II   from   I            3{(u_1 )^2 −(u_2 )^2 }a_2 =6(u_1 )^2 −2                   a_2 =((6(u_1 )^2 −2)/(3{(u_1 )^2 −(u_2 )^2 }))  Similarly,    a_1 =((6(u_2 )^2 −2)/(3{(u_2 )^2 −(u_1 )^2 }))  I think u_1  and u_2  should be taken as arbitrary constants.  Or otherwise if a_1  and  a_2   are taken as  arbitrary then  u_1   and  u_2   can be determined.

$${Let}\:{P}\left({t}\right)={at}^{\mathrm{3}} +{bt}^{\mathrm{2}} +{ct}+{d} \\ $$$${LHS}: \\ $$$$\:\:\:\:\:\:\int{P}\left({t}\right)\boldsymbol{\mathrm{d}}{t}=\frac{{a}}{\mathrm{4}}{t}^{\mathrm{4}} +\frac{{b}}{\mathrm{3}}{t}^{\mathrm{3}} +\frac{{c}}{\mathrm{2}}{t}^{\mathrm{2}} +{dt}+{C} \\ $$$$\:\:\:\:\:\:\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} {P}\left({t}\right)\boldsymbol{\mathrm{d}}{t}=\left[\frac{{a}}{\mathrm{4}}{t}^{\mathrm{4}} +\frac{{b}}{\mathrm{3}}{t}^{\mathrm{3}} +\frac{{c}}{\mathrm{2}}{t}^{\mathrm{2}} +{dt}+{C}\right]_{−\mathrm{1}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left[\frac{{a}}{\mathrm{4}}+\frac{{b}}{\mathrm{3}}+\frac{{c}}{\mathrm{2}}+{d}+{C}\right]−\left[\frac{{a}}{\mathrm{4}}−\frac{{b}}{\mathrm{3}}+\frac{{c}}{\mathrm{2}}−{d}+{C}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}{b}}{\mathrm{3}}+\mathrm{2}{d} \\ $$$${RHS}: \\ $$$$\:\:\:\:\:\:\:{a}_{\mathrm{1}} {P}\left({u}_{\mathrm{1}} \right)+{a}_{\mathrm{2}} {P}\left({u}_{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:={a}_{\mathrm{1}} \left\{{a}\left({u}_{\mathrm{1}} \right)^{\mathrm{3}} +{b}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} +{c}\left({u}_{\mathrm{1}} \right)+{d}\right\}+{a}_{\mathrm{2}} \left\{{a}\left({u}_{\mathrm{2}} \right)^{\mathrm{3}} +{b}\left({u}_{\mathrm{2}} \right)^{\mathrm{2}} +{cu}_{\mathrm{2}} +{d}\right\} \\ $$$${Comparing}\:{coefficients}\:{of}\:{b}\:\:{and}\:\:{d}\:{in}\:{LHS}\:\:{and}\:\:{RHS} \\ $$$$\:\:\:\frac{\mathrm{2}}{\mathrm{3}}={a}_{\mathrm{1}} \left({u}_{\mathrm{1}} \right)^{\mathrm{2}} +{a}_{\mathrm{2}} \left({u}_{\mathrm{2}} \right)^{\mathrm{2}} \:\:\:\:{and}\:\:\:\mathrm{2}={a}_{\mathrm{1}} +{a}_{\mathrm{2}} \\ $$$${Solving}\:{simultaneously} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} \:{a}_{\mathrm{1}} +\mathrm{3}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} {a}_{\mathrm{2}} =\mathrm{6}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} \:\:\:\:............{I} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{3}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} {a}_{\mathrm{1}} +\mathrm{3}\left({u}_{\mathrm{2}} \right)^{\mathrm{2}} {a}_{\mathrm{2}} =\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:............{II} \\ $$$$\:{Subtracting}\:\:{II}\:\:\:{from}\:\:\:{I} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{3}\left\{\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} −\left({u}_{\mathrm{2}} \right)^{\mathrm{2}} \right\}{a}_{\mathrm{2}} =\mathrm{6}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} −\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{\mathrm{2}} =\frac{\mathrm{6}\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{3}\left\{\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} −\left({u}_{\mathrm{2}} \right)^{\mathrm{2}} \right\}} \\ $$$${Similarly},\:\:\:\:{a}_{\mathrm{1}} =\frac{\mathrm{6}\left({u}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{3}\left\{\left({u}_{\mathrm{2}} \right)^{\mathrm{2}} −\left({u}_{\mathrm{1}} \right)^{\mathrm{2}} \right\}} \\ $$$${I}\:{think}\:{u}_{\mathrm{1}} \:{and}\:{u}_{\mathrm{2}} \:{should}\:{be}\:{taken}\:{as}\:{arbitrary}\:{constants}. \\ $$$${Or}\:{otherwise}\:{if}\:{a}_{\mathrm{1}} \:{and}\:\:{a}_{\mathrm{2}} \:\:{are}\:{taken}\:{as}\:\:{arbitrary}\:{then} \\ $$$${u}_{\mathrm{1}} \:\:{and}\:\:{u}_{\mathrm{2}} \:\:{can}\:{be}\:{determined}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com