Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16739 by Tinkutara last updated on 26/Jun/17

Let M be a point in the interior of the  equilateral triangle ABC and let A′,  B′ and C′ be its projections onto the  sides BC, CA and AB, respectively.  Prove that the sum of lengths of the  inradii of triangles MAC′, MBA′ and  MCB′ equals the sum of lengths of the  inradii of trianges MAB′, MBC′ and  MCA′.

$$\mathrm{Let}\:{M}\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}\:\mathrm{and}\:\mathrm{let}\:{A}', \\ $$$${B}'\:\mathrm{and}\:{C}'\:\mathrm{be}\:\mathrm{its}\:\mathrm{projections}\:\mathrm{onto}\:\mathrm{the} \\ $$$$\mathrm{sides}\:{BC},\:{CA}\:\mathrm{and}\:{AB},\:\mathrm{respectively}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{inradii}\:\mathrm{of}\:\mathrm{triangles}\:{MAC}',\:{MBA}'\:\mathrm{and} \\ $$$${MCB}'\:\mathrm{equals}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{inradii}\:\mathrm{of}\:\mathrm{trianges}\:{MAB}',\:{MBC}'\:\mathrm{and} \\ $$$${MCA}'. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com