Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16873 by Tinkutara last updated on 27/Jun/17

Let I be the incenter of ΔABC. It is  known that for every point M ∈ (AB),  one can find the points N ∈ (BC) and  P ∈ (AC) such that I is the centroid of  ΔMNP. Prove that ABC is an  equilateral triangle.

$$\mathrm{Let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\Delta{ABC}.\:\mathrm{It}\:\mathrm{is} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\:\mathrm{point}\:{M}\:\in\:\left({AB}\right), \\ $$$$\mathrm{one}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:{N}\:\in\:\left({BC}\right)\:\mathrm{and} \\ $$$${P}\:\in\:\left({AC}\right)\:\mathrm{such}\:\mathrm{that}\:{I}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of} \\ $$$$\Delta{MNP}.\:\mathrm{Prove}\:\mathrm{that}\:{ABC}\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com