Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 214140 by issac last updated on 29/Nov/24

Let F ; R^n →R^n  be continuously  differentiable   a) assume that the Jacoboian matrix   (∂f_i /∂x_j ) has rank n everywhere  prove that f(R^n )is open  b) suppose that f^(−1) (K) is compact  whenever K⊂R^n  is compact.  prove that f(R^n ) is closed

$$\mathrm{Let}\:{F}\:;\:\mathbb{R}^{{n}} \rightarrow\mathbb{R}^{{n}} \:\mathrm{be}\:\mathrm{continuously} \\ $$$$\mathrm{differentiable}\: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\mathrm{assume}\:\mathrm{that}\:\mathrm{the}\:\mathrm{Jacoboian}\:\mathrm{matrix}\: \\ $$$$\frac{\partial{f}_{{i}} }{\partial{x}_{{j}} }\:\mathrm{has}\:\mathrm{rank}\:{n}\:\mathrm{everywhere} \\ $$$$\mathrm{prove}\:\mathrm{that}\:{f}\left(\mathbb{R}^{{n}} \right)\mathrm{is}\:\mathrm{open} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\mathrm{suppose}\:\mathrm{that}\:{f}^{−\mathrm{1}} \left({K}\right)\:\mathrm{is}\:\mathrm{compact} \\ $$$$\mathrm{whenever}\:{K}\subset\mathbb{R}^{{n}} \:\mathrm{is}\:\mathrm{compact}. \\ $$$$\mathrm{prove}\:\mathrm{that}\:{f}\left(\mathbb{R}^{{n}} \right)\:\mathrm{is}\:\mathrm{closed} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com