Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 63942 by gunawan last updated on 11/Jul/19

Let (1+x)^n = Σ_(r=0) ^n  C_r  x^r  and Σ_(r=0) ^n  (C_r /(r+1)) = k,  then the value of k is

$$\mathrm{Let}\:\left(\mathrm{1}+{x}\right)^{{n}} =\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{C}_{{r}} \:{x}^{{r}} \:\mathrm{and}\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:\frac{{C}_{{r}} }{{r}+\mathrm{1}}\:=\:{k}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{is} \\ $$

Commented by mathmax by abdo last updated on 11/Jul/19

(1+x)^n  =Σ_(r=0) ^n  C_n ^r  x^r  ⇒C_r =C_n ^r  ⇒  Σ_(r=0) ^n  (C_r /(r+1)) =Σ_(r=0) ^n   (C_n ^r /(r+1))  let p(x) =Σ_(r=0) ^n  (C_n ^r /(r+1)) x^(r+1)  ⇒p^′ (x) =Σ_(r=0) ^n  C_n ^r  x^r   =(x+1)^n  ⇒  p(x)=∫ (x+1)^n dx +c =(1/(n+1))(x+1)^(n+1)  +c  p(0)=0=(1/(n+1)) +c ⇒c=−(1/(n+1)) ⇒p(x) =(((x+1)^(n+1) −1)/(n+1)) ⇒  Σ_(r=0) ^∞  (C_r /(r+1)) =p(1) =((2^(n+1) −1)/(n+1)) ⇒k =((2^(n+1) −1)/(n+1)) .

$$\left(\mathrm{1}+{x}\right)^{{n}} \:=\sum_{{r}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{r}} \:{x}^{{r}} \:\Rightarrow{C}_{{r}} ={C}_{{n}} ^{{r}} \:\Rightarrow \\ $$$$\sum_{{r}=\mathrm{0}} ^{{n}} \:\frac{{C}_{{r}} }{{r}+\mathrm{1}}\:=\sum_{{r}=\mathrm{0}} ^{{n}} \:\:\frac{{C}_{{n}} ^{{r}} }{{r}+\mathrm{1}} \\ $$$${let}\:{p}\left({x}\right)\:=\sum_{{r}=\mathrm{0}} ^{{n}} \:\frac{{C}_{{n}} ^{{r}} }{{r}+\mathrm{1}}\:{x}^{{r}+\mathrm{1}} \:\Rightarrow{p}^{'} \left({x}\right)\:=\sum_{{r}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{r}} \:{x}^{{r}} \:\:=\left({x}+\mathrm{1}\right)^{{n}} \:\Rightarrow \\ $$$${p}\left({x}\right)=\int\:\left({x}+\mathrm{1}\right)^{{n}} {dx}\:+{c}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}\left({x}+\mathrm{1}\right)^{{n}+\mathrm{1}} \:+{c} \\ $$$${p}\left(\mathrm{0}\right)=\mathrm{0}=\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+{c}\:\Rightarrow{c}=−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow{p}\left({x}\right)\:=\frac{\left({x}+\mathrm{1}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow \\ $$$$\sum_{{r}=\mathrm{0}} ^{\infty} \:\frac{{C}_{{r}} }{{r}+\mathrm{1}}\:={p}\left(\mathrm{1}\right)\:=\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow{k}\:=\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}\:. \\ $$$$ \\ $$

Answered by mr W last updated on 11/Jul/19

(1+x)^n = Σ_(r=0) ^n  C_r  x^r   ∫_0 ^x (1+x)^n dx= Σ_(r=0) ^n ∫_0 ^x  C_r  x^r dx  (1/(n+1))(1+x)^(n+1) −(1/(n+1))= Σ_(r=0) ^n (1/(r+1)) C_r  x^(r+1)   let x=1:  ((2^(n+1) −1)/(n+1))= Σ_(r=0) ^n (1/(r+1)) C_r =k   ⇒k=((2^(n+1) −1)/(n+1))

$$\left(\mathrm{1}+{x}\right)^{{n}} =\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{C}_{{r}} \:{x}^{{r}} \\ $$$$\int_{\mathrm{0}} ^{{x}} \left(\mathrm{1}+{x}\right)^{{n}} {dx}=\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\int_{\mathrm{0}} ^{{x}} \:{C}_{{r}} \:{x}^{{r}} {dx} \\ $$$$\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{1}} −\frac{\mathrm{1}}{{n}+\mathrm{1}}=\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{r}+\mathrm{1}}\:{C}_{{r}} \:{x}^{{r}+\mathrm{1}} \\ $$$${let}\:{x}=\mathrm{1}: \\ $$$$\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}=\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{r}+\mathrm{1}}\:{C}_{{r}} ={k}\: \\ $$$$\Rightarrow{k}=\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com